Loading…

Optimal maintenance policies for three-states POMDP with quality measurement errors

Partially Observed Markov Decision Process (POMDP) has been used to model decision making under uncertainty in several areas. A few areas of application include: manufacturing, healthcare, business and military applications. In the POMDP context, systems are considered as multi-state systems with hi...

Full description

Saved in:
Bibliographic Details
Main Authors: AlDurgam, M M, Duffuaa, S O
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2243
container_issue
container_start_page 2239
container_title
container_volume
creator AlDurgam, M M
Duffuaa, S O
description Partially Observed Markov Decision Process (POMDP) has been used to model decision making under uncertainty in several areas. A few areas of application include: manufacturing, healthcare, business and military applications. In the POMDP context, systems are considered as multi-state systems with hidden states. The common thing among all POMDP models is the existence of measurements utilized to infer about the actual hidden state of the system on hand. However, measurements, in general, are not error free. The impact of measurement errors on the POMDP optimal decision polices is formulated and studied for a three-state deteriorating machine with two quality outcomes and possible quality measurement errors. The decision making problem is modeled as a Three-Layers Hidden Markov Decision Process (TLHMDP). The objective function of the POMDP problem is shown to be a piecewise linear convex one. The impact of measurement errors in the POMDP context is demonstrated by numerical example.
doi_str_mv 10.1109/IEEM.2010.5674294
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5674294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5674294</ieee_id><sourcerecordid>5674294</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-333c3ed75dbb2147827964daa276a05378a17e70a2da03fea99f96f2538276663</originalsourceid><addsrcrecordid>eNpVUMtKw0AUHV9gqfkAcTM_kDqvzGSWUqMWWlKwC3flNrmhI0kaZ6ZI_96ARXB1OA8OnEPIPWczzpl9XBTFaibYSDNtlLDqgiTW5FwJpfKMSX5JJoJnJpVafFz987i5_vM4vyVJCJ-MMS5yLayekPdyiK6Dlnbg-og99BXS4dC6ymGgzcHTuPeIaYgQR2Fdrp7X9NvFPf06QuviiXYI4eixwz5S9P7gwx25aaANmJxxSjYvxWb-li7L18X8aZk6y2Iqpawk1iardzvBlcmFsVrVAMJoYJk0OXCDhoGogckGwdrG6kZkckxqreWUPPzWOkTcDn6c4U_b80PyB7qSVWA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal maintenance policies for three-states POMDP with quality measurement errors</title><source>IEEE Xplore All Conference Series</source><creator>AlDurgam, M M ; Duffuaa, S O</creator><creatorcontrib>AlDurgam, M M ; Duffuaa, S O</creatorcontrib><description>Partially Observed Markov Decision Process (POMDP) has been used to model decision making under uncertainty in several areas. A few areas of application include: manufacturing, healthcare, business and military applications. In the POMDP context, systems are considered as multi-state systems with hidden states. The common thing among all POMDP models is the existence of measurements utilized to infer about the actual hidden state of the system on hand. However, measurements, in general, are not error free. The impact of measurement errors on the POMDP optimal decision polices is formulated and studied for a three-state deteriorating machine with two quality outcomes and possible quality measurement errors. The decision making problem is modeled as a Three-Layers Hidden Markov Decision Process (TLHMDP). The objective function of the POMDP problem is shown to be a piecewise linear convex one. The impact of measurement errors in the POMDP context is demonstrated by numerical example.</description><identifier>ISSN: 2157-3611</identifier><identifier>ISBN: 9781424485017</identifier><identifier>ISBN: 1424485010</identifier><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781424485031</identifier><identifier>EISBN: 9781424485024</identifier><identifier>EISBN: 1424485037</identifier><identifier>EISBN: 1424485029</identifier><identifier>DOI: 10.1109/IEEM.2010.5674294</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Hidden Markov models ; Maintenance engineering ; Markov processes ; Mathematical model ; Measurement errors ; Measurement uncertainty ; POMDP ; TLHMDP</subject><ispartof>2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010, p.2239-2243</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5674294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5674294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>AlDurgam, M M</creatorcontrib><creatorcontrib>Duffuaa, S O</creatorcontrib><title>Optimal maintenance policies for three-states POMDP with quality measurement errors</title><title>2010 IEEE International Conference on Industrial Engineering and Engineering Management</title><addtitle>IEEM</addtitle><description>Partially Observed Markov Decision Process (POMDP) has been used to model decision making under uncertainty in several areas. A few areas of application include: manufacturing, healthcare, business and military applications. In the POMDP context, systems are considered as multi-state systems with hidden states. The common thing among all POMDP models is the existence of measurements utilized to infer about the actual hidden state of the system on hand. However, measurements, in general, are not error free. The impact of measurement errors on the POMDP optimal decision polices is formulated and studied for a three-state deteriorating machine with two quality outcomes and possible quality measurement errors. The decision making problem is modeled as a Three-Layers Hidden Markov Decision Process (TLHMDP). The objective function of the POMDP problem is shown to be a piecewise linear convex one. The impact of measurement errors in the POMDP context is demonstrated by numerical example.</description><subject>Equations</subject><subject>Hidden Markov models</subject><subject>Maintenance engineering</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Measurement errors</subject><subject>Measurement uncertainty</subject><subject>POMDP</subject><subject>TLHMDP</subject><issn>2157-3611</issn><issn>2157-362X</issn><isbn>9781424485017</isbn><isbn>1424485010</isbn><isbn>9781424485031</isbn><isbn>9781424485024</isbn><isbn>1424485037</isbn><isbn>1424485029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKw0AUHV9gqfkAcTM_kDqvzGSWUqMWWlKwC3flNrmhI0kaZ6ZI_96ARXB1OA8OnEPIPWczzpl9XBTFaibYSDNtlLDqgiTW5FwJpfKMSX5JJoJnJpVafFz987i5_vM4vyVJCJ-MMS5yLayekPdyiK6Dlnbg-og99BXS4dC6ymGgzcHTuPeIaYgQR2Fdrp7X9NvFPf06QuviiXYI4eixwz5S9P7gwx25aaANmJxxSjYvxWb-li7L18X8aZk6y2Iqpawk1iardzvBlcmFsVrVAMJoYJk0OXCDhoGogckGwdrG6kZkckxqreWUPPzWOkTcDn6c4U_b80PyB7qSVWA</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>AlDurgam, M M</creator><creator>Duffuaa, S O</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Optimal maintenance policies for three-states POMDP with quality measurement errors</title><author>AlDurgam, M M ; Duffuaa, S O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-333c3ed75dbb2147827964daa276a05378a17e70a2da03fea99f96f2538276663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Equations</topic><topic>Hidden Markov models</topic><topic>Maintenance engineering</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Measurement errors</topic><topic>Measurement uncertainty</topic><topic>POMDP</topic><topic>TLHMDP</topic><toplevel>online_resources</toplevel><creatorcontrib>AlDurgam, M M</creatorcontrib><creatorcontrib>Duffuaa, S O</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AlDurgam, M M</au><au>Duffuaa, S O</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal maintenance policies for three-states POMDP with quality measurement errors</atitle><btitle>2010 IEEE International Conference on Industrial Engineering and Engineering Management</btitle><stitle>IEEM</stitle><date>2010-12</date><risdate>2010</risdate><spage>2239</spage><epage>2243</epage><pages>2239-2243</pages><issn>2157-3611</issn><eissn>2157-362X</eissn><isbn>9781424485017</isbn><isbn>1424485010</isbn><eisbn>9781424485031</eisbn><eisbn>9781424485024</eisbn><eisbn>1424485037</eisbn><eisbn>1424485029</eisbn><abstract>Partially Observed Markov Decision Process (POMDP) has been used to model decision making under uncertainty in several areas. A few areas of application include: manufacturing, healthcare, business and military applications. In the POMDP context, systems are considered as multi-state systems with hidden states. The common thing among all POMDP models is the existence of measurements utilized to infer about the actual hidden state of the system on hand. However, measurements, in general, are not error free. The impact of measurement errors on the POMDP optimal decision polices is formulated and studied for a three-state deteriorating machine with two quality outcomes and possible quality measurement errors. The decision making problem is modeled as a Three-Layers Hidden Markov Decision Process (TLHMDP). The objective function of the POMDP problem is shown to be a piecewise linear convex one. The impact of measurement errors in the POMDP context is demonstrated by numerical example.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2010.5674294</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-3611
ispartof 2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010, p.2239-2243
issn 2157-3611
2157-362X
language eng
recordid cdi_ieee_primary_5674294
source IEEE Xplore All Conference Series
subjects Equations
Hidden Markov models
Maintenance engineering
Markov processes
Mathematical model
Measurement errors
Measurement uncertainty
POMDP
TLHMDP
title Optimal maintenance policies for three-states POMDP with quality measurement errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20maintenance%20policies%20for%20three-states%20POMDP%20with%20quality%20measurement%20errors&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management&rft.au=AlDurgam,%20M%20M&rft.date=2010-12&rft.spage=2239&rft.epage=2243&rft.pages=2239-2243&rft.issn=2157-3611&rft.eissn=2157-362X&rft.isbn=9781424485017&rft.isbn_list=1424485010&rft_id=info:doi/10.1109/IEEM.2010.5674294&rft.eisbn=9781424485031&rft.eisbn_list=9781424485024&rft.eisbn_list=1424485037&rft.eisbn_list=1424485029&rft_dat=%3Cieee_CHZPO%3E5674294%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-333c3ed75dbb2147827964daa276a05378a17e70a2da03fea99f96f2538276663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5674294&rfr_iscdi=true