Loading…
Toward managing demand variability by neuro-fuzzy approach
Because of globalization, fast changes of technology and short life cycle of products, enhancing the accuracy of demand forecasts becomes one of the important issues for managers. The objective of this paper is to analyze and explore given data of orders using adaptive neuro-fuzzy inference system (...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1692 |
container_issue | |
container_start_page | 1688 |
container_title | |
container_volume | |
creator | Wen-Pai Wang Chun-Chih Chiu |
description | Because of globalization, fast changes of technology and short life cycle of products, enhancing the accuracy of demand forecasts becomes one of the important issues for managers. The objective of this paper is to analyze and explore given data of orders using adaptive neuro-fuzzy inference system (ANFIS) and to draw up, by ANFIS learning mechanism, the relational rules from historical order data, whereby to construct the needed forecasting model, hoping to make accurate forecasts according to the demand variability. Afterward the proposed forecasting model is compared with the conventional regression analysis and back-propagation network to verify its feasibility and validity. |
doi_str_mv | 10.1109/IEEM.2010.5674595 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5674595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5674595</ieee_id><sourcerecordid>5674595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-546738740d191a539a0946c96632d2863dad9987513e29333f47ec43e7c19cf73</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_sNQ8gLiZF0idO3d-ct1JiVqouMnCXZlmJnWkTULSKunTG7AIrs45fHA4HMZuQcwABN0v8vx1JsUYtbFKkz5jCdkMlFQq0wLhnE0kaJuike8X_xjYyz8GcM2Svv8UQoDMjCQzYQ9F8-06z3eudptYb7gPo_X8y3XRreM27ge-HngdDl2TVofjceCubbvGlR837Kpy2z4kJ52y4ikv5i_p8u15MX9cppHEPtXKWMysEh4InEZygpQpyRiUflyB3nmizGrAIAkRK2VDqTDYEqisLE7Z3W9tDCGs2i7uXDesTkfgDzh5S3I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Toward managing demand variability by neuro-fuzzy approach</title><source>IEEE Xplore All Conference Series</source><creator>Wen-Pai Wang ; Chun-Chih Chiu</creator><creatorcontrib>Wen-Pai Wang ; Chun-Chih Chiu</creatorcontrib><description>Because of globalization, fast changes of technology and short life cycle of products, enhancing the accuracy of demand forecasts becomes one of the important issues for managers. The objective of this paper is to analyze and explore given data of orders using adaptive neuro-fuzzy inference system (ANFIS) and to draw up, by ANFIS learning mechanism, the relational rules from historical order data, whereby to construct the needed forecasting model, hoping to make accurate forecasts according to the demand variability. Afterward the proposed forecasting model is compared with the conventional regression analysis and back-propagation network to verify its feasibility and validity.</description><identifier>ISSN: 2157-3611</identifier><identifier>ISBN: 9781424485017</identifier><identifier>ISBN: 1424485010</identifier><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781424485031</identifier><identifier>EISBN: 9781424485024</identifier><identifier>EISBN: 1424485037</identifier><identifier>EISBN: 1424485029</identifier><identifier>DOI: 10.1109/IEEM.2010.5674595</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; ANFIS ; Artificial neural networks ; Data models ; demand variability ; Forecasting ; Marketing and sales ; Predictive models ; Training</subject><ispartof>2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010, p.1688-1692</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5674595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5674595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen-Pai Wang</creatorcontrib><creatorcontrib>Chun-Chih Chiu</creatorcontrib><title>Toward managing demand variability by neuro-fuzzy approach</title><title>2010 IEEE International Conference on Industrial Engineering and Engineering Management</title><addtitle>IEEM</addtitle><description>Because of globalization, fast changes of technology and short life cycle of products, enhancing the accuracy of demand forecasts becomes one of the important issues for managers. The objective of this paper is to analyze and explore given data of orders using adaptive neuro-fuzzy inference system (ANFIS) and to draw up, by ANFIS learning mechanism, the relational rules from historical order data, whereby to construct the needed forecasting model, hoping to make accurate forecasts according to the demand variability. Afterward the proposed forecasting model is compared with the conventional regression analysis and back-propagation network to verify its feasibility and validity.</description><subject>Accuracy</subject><subject>ANFIS</subject><subject>Artificial neural networks</subject><subject>Data models</subject><subject>demand variability</subject><subject>Forecasting</subject><subject>Marketing and sales</subject><subject>Predictive models</subject><subject>Training</subject><issn>2157-3611</issn><issn>2157-362X</issn><isbn>9781424485017</isbn><isbn>1424485010</isbn><isbn>9781424485031</isbn><isbn>9781424485024</isbn><isbn>1424485037</isbn><isbn>1424485029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1Kw0AUhcc_sNQ8gLiZF0idO3d-ct1JiVqouMnCXZlmJnWkTULSKunTG7AIrs45fHA4HMZuQcwABN0v8vx1JsUYtbFKkz5jCdkMlFQq0wLhnE0kaJuike8X_xjYyz8GcM2Svv8UQoDMjCQzYQ9F8-06z3eudptYb7gPo_X8y3XRreM27ge-HngdDl2TVofjceCubbvGlR837Kpy2z4kJ52y4ikv5i_p8u15MX9cppHEPtXKWMysEh4InEZygpQpyRiUflyB3nmizGrAIAkRK2VDqTDYEqisLE7Z3W9tDCGs2i7uXDesTkfgDzh5S3I</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Wen-Pai Wang</creator><creator>Chun-Chih Chiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Toward managing demand variability by neuro-fuzzy approach</title><author>Wen-Pai Wang ; Chun-Chih Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-546738740d191a539a0946c96632d2863dad9987513e29333f47ec43e7c19cf73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>ANFIS</topic><topic>Artificial neural networks</topic><topic>Data models</topic><topic>demand variability</topic><topic>Forecasting</topic><topic>Marketing and sales</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wen-Pai Wang</creatorcontrib><creatorcontrib>Chun-Chih Chiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen-Pai Wang</au><au>Chun-Chih Chiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Toward managing demand variability by neuro-fuzzy approach</atitle><btitle>2010 IEEE International Conference on Industrial Engineering and Engineering Management</btitle><stitle>IEEM</stitle><date>2010-12</date><risdate>2010</risdate><spage>1688</spage><epage>1692</epage><pages>1688-1692</pages><issn>2157-3611</issn><eissn>2157-362X</eissn><isbn>9781424485017</isbn><isbn>1424485010</isbn><eisbn>9781424485031</eisbn><eisbn>9781424485024</eisbn><eisbn>1424485037</eisbn><eisbn>1424485029</eisbn><abstract>Because of globalization, fast changes of technology and short life cycle of products, enhancing the accuracy of demand forecasts becomes one of the important issues for managers. The objective of this paper is to analyze and explore given data of orders using adaptive neuro-fuzzy inference system (ANFIS) and to draw up, by ANFIS learning mechanism, the relational rules from historical order data, whereby to construct the needed forecasting model, hoping to make accurate forecasts according to the demand variability. Afterward the proposed forecasting model is compared with the conventional regression analysis and back-propagation network to verify its feasibility and validity.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2010.5674595</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-3611 |
ispartof | 2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010, p.1688-1692 |
issn | 2157-3611 2157-362X |
language | eng |
recordid | cdi_ieee_primary_5674595 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy ANFIS Artificial neural networks Data models demand variability Forecasting Marketing and sales Predictive models Training |
title | Toward managing demand variability by neuro-fuzzy approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Toward%20managing%20demand%20variability%20by%20neuro-fuzzy%20approach&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management&rft.au=Wen-Pai%20Wang&rft.date=2010-12&rft.spage=1688&rft.epage=1692&rft.pages=1688-1692&rft.issn=2157-3611&rft.eissn=2157-362X&rft.isbn=9781424485017&rft.isbn_list=1424485010&rft_id=info:doi/10.1109/IEEM.2010.5674595&rft.eisbn=9781424485031&rft.eisbn_list=9781424485024&rft.eisbn_list=1424485037&rft.eisbn_list=1424485029&rft_dat=%3Cieee_CHZPO%3E5674595%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-546738740d191a539a0946c96632d2863dad9987513e29333f47ec43e7c19cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5674595&rfr_iscdi=true |