Loading…
Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories
The embedded NOR-type Non Volatile Memory (eNVM) cell is characterized by many figures of merit. Of particular interest are the programming efficiency (PE), defined as the electron gate-to-drain current ratio (I g /I d ) during programming, and the drain disturb current (DDC), defined as the hole ga...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zaka, A Palestri, P Rideau, D Iellina, M Dornel, E Rafhay, Q Tavernier, C Jaouen, H |
description | The embedded NOR-type Non Volatile Memory (eNVM) cell is characterized by many figures of merit. Of particular interest are the programming efficiency (PE), defined as the electron gate-to-drain current ratio (I g /I d ) during programming, and the drain disturb current (DDC), defined as the hole gate current I gh during drain disturb (Fig. 1). eNVM gate-length scaling has brought shallower and steeper Source/Drain (S/D) junctions enabling not only higher PE but also increased DDC, the latter yielding to potential reliability issues. Therefore, in the spirit of a compromise in channel/LDD implant conditions is here presented, showing a trade-off between electron and hole injection during programming and drain disturb phases, respectively. |
doi_str_mv | 10.1109/IWCE.2010.5677949 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5677949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5677949</ieee_id><sourcerecordid>5677949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bbd87def4127723a79d4a5d6f983a4b1300aa43acbc20fd81f1a84a0afa043573</originalsourceid><addsrcrecordid>eNpVUEtLAzEYjIig1P0B4iV_YGte2yRHWaoW6uNQ9Vi-7PelRPYh2fXQf--CvTiXYQZmGIaxGymWUgp_t_ms10slZlmtrPXGn7HCWyeNMsZrp-T5P63dJSvG8UvMqNQcUFds95aHQ4auS_2BU4ypSdQ3Rw49csyQeo5pnH5y4FMGpHKIkc8mdYEQCfnL0POPoYUptcSfqRtyovGaXURoRypOvGDvD-td_VRuXx839f22TNJWUxkCOosUjZzHKA3Wo4EKV9E7DSZILQSA0dCERomITkYJzoCACMLoyuoFu_3rTUS0_86pg3zcn77Qv8yaUtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaka, A ; Palestri, P ; Rideau, D ; Iellina, M ; Dornel, E ; Rafhay, Q ; Tavernier, C ; Jaouen, H</creator><creatorcontrib>Zaka, A ; Palestri, P ; Rideau, D ; Iellina, M ; Dornel, E ; Rafhay, Q ; Tavernier, C ; Jaouen, H</creatorcontrib><description>The embedded NOR-type Non Volatile Memory (eNVM) cell is characterized by many figures of merit. Of particular interest are the programming efficiency (PE), defined as the electron gate-to-drain current ratio (I g /I d ) during programming, and the drain disturb current (DDC), defined as the hole gate current I gh during drain disturb (Fig. 1). eNVM gate-length scaling has brought shallower and steeper Source/Drain (S/D) junctions enabling not only higher PE but also increased DDC, the latter yielding to potential reliability issues. Therefore, in the spirit of a compromise in channel/LDD implant conditions is here presented, showing a trade-off between electron and hole injection during programming and drain disturb phases, respectively.</description><identifier>ISBN: 9781424493838</identifier><identifier>ISBN: 1424493838</identifier><identifier>EISBN: 9781424493821</identifier><identifier>EISBN: 1424493846</identifier><identifier>EISBN: 9781424493845</identifier><identifier>EISBN: 142449382X</identifier><identifier>DOI: 10.1109/IWCE.2010.5677949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Doping ; Junctions ; Logic gates ; Monte Carlo methods ; Programming ; Semiconductor process modeling</subject><ispartof>2010 14th International Workshop on Computational Electronics, 2010, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5677949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5677949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaka, A</creatorcontrib><creatorcontrib>Palestri, P</creatorcontrib><creatorcontrib>Rideau, D</creatorcontrib><creatorcontrib>Iellina, M</creatorcontrib><creatorcontrib>Dornel, E</creatorcontrib><creatorcontrib>Rafhay, Q</creatorcontrib><creatorcontrib>Tavernier, C</creatorcontrib><creatorcontrib>Jaouen, H</creatorcontrib><title>Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories</title><title>2010 14th International Workshop on Computational Electronics</title><addtitle>IWCE</addtitle><description>The embedded NOR-type Non Volatile Memory (eNVM) cell is characterized by many figures of merit. Of particular interest are the programming efficiency (PE), defined as the electron gate-to-drain current ratio (I g /I d ) during programming, and the drain disturb current (DDC), defined as the hole gate current I gh during drain disturb (Fig. 1). eNVM gate-length scaling has brought shallower and steeper Source/Drain (S/D) junctions enabling not only higher PE but also increased DDC, the latter yielding to potential reliability issues. Therefore, in the spirit of a compromise in channel/LDD implant conditions is here presented, showing a trade-off between electron and hole injection during programming and drain disturb phases, respectively.</description><subject>Doping</subject><subject>Junctions</subject><subject>Logic gates</subject><subject>Monte Carlo methods</subject><subject>Programming</subject><subject>Semiconductor process modeling</subject><isbn>9781424493838</isbn><isbn>1424493838</isbn><isbn>9781424493821</isbn><isbn>1424493846</isbn><isbn>9781424493845</isbn><isbn>142449382X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUEtLAzEYjIig1P0B4iV_YGte2yRHWaoW6uNQ9Vi-7PelRPYh2fXQf--CvTiXYQZmGIaxGymWUgp_t_ms10slZlmtrPXGn7HCWyeNMsZrp-T5P63dJSvG8UvMqNQcUFds95aHQ4auS_2BU4ypSdQ3Rw49csyQeo5pnH5y4FMGpHKIkc8mdYEQCfnL0POPoYUptcSfqRtyovGaXURoRypOvGDvD-td_VRuXx839f22TNJWUxkCOosUjZzHKA3Wo4EKV9E7DSZILQSA0dCERomITkYJzoCACMLoyuoFu_3rTUS0_86pg3zcn77Qv8yaUtg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Zaka, A</creator><creator>Palestri, P</creator><creator>Rideau, D</creator><creator>Iellina, M</creator><creator>Dornel, E</creator><creator>Rafhay, Q</creator><creator>Tavernier, C</creator><creator>Jaouen, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories</title><author>Zaka, A ; Palestri, P ; Rideau, D ; Iellina, M ; Dornel, E ; Rafhay, Q ; Tavernier, C ; Jaouen, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bbd87def4127723a79d4a5d6f983a4b1300aa43acbc20fd81f1a84a0afa043573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Doping</topic><topic>Junctions</topic><topic>Logic gates</topic><topic>Monte Carlo methods</topic><topic>Programming</topic><topic>Semiconductor process modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaka, A</creatorcontrib><creatorcontrib>Palestri, P</creatorcontrib><creatorcontrib>Rideau, D</creatorcontrib><creatorcontrib>Iellina, M</creatorcontrib><creatorcontrib>Dornel, E</creatorcontrib><creatorcontrib>Rafhay, Q</creatorcontrib><creatorcontrib>Tavernier, C</creatorcontrib><creatorcontrib>Jaouen, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaka, A</au><au>Palestri, P</au><au>Rideau, D</au><au>Iellina, M</au><au>Dornel, E</au><au>Rafhay, Q</au><au>Tavernier, C</au><au>Jaouen, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories</atitle><btitle>2010 14th International Workshop on Computational Electronics</btitle><stitle>IWCE</stitle><date>2010-10</date><risdate>2010</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><isbn>9781424493838</isbn><isbn>1424493838</isbn><eisbn>9781424493821</eisbn><eisbn>1424493846</eisbn><eisbn>9781424493845</eisbn><eisbn>142449382X</eisbn><abstract>The embedded NOR-type Non Volatile Memory (eNVM) cell is characterized by many figures of merit. Of particular interest are the programming efficiency (PE), defined as the electron gate-to-drain current ratio (I g /I d ) during programming, and the drain disturb current (DDC), defined as the hole gate current I gh during drain disturb (Fig. 1). eNVM gate-length scaling has brought shallower and steeper Source/Drain (S/D) junctions enabling not only higher PE but also increased DDC, the latter yielding to potential reliability issues. Therefore, in the spirit of a compromise in channel/LDD implant conditions is here presented, showing a trade-off between electron and hole injection during programming and drain disturb phases, respectively.</abstract><pub>IEEE</pub><doi>10.1109/IWCE.2010.5677949</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424493838 |
ispartof | 2010 14th International Workshop on Computational Electronics, 2010, p.1-3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5677949 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Doping Junctions Logic gates Monte Carlo methods Programming Semiconductor process modeling |
title | Programming efficiency and drain disturb trade-off in embedded Non Volatile Memories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Programming%20efficiency%20and%20drain%20disturb%20trade-off%20in%20embedded%20Non%20Volatile%20Memories&rft.btitle=2010%2014th%20International%20Workshop%20on%20Computational%20Electronics&rft.au=Zaka,%20A&rft.date=2010-10&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.isbn=9781424493838&rft.isbn_list=1424493838&rft_id=info:doi/10.1109/IWCE.2010.5677949&rft.eisbn=9781424493821&rft.eisbn_list=1424493846&rft.eisbn_list=9781424493845&rft.eisbn_list=142449382X&rft_dat=%3Cieee_6IE%3E5677949%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bbd87def4127723a79d4a5d6f983a4b1300aa43acbc20fd81f1a84a0afa043573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5677949&rfr_iscdi=true |