Loading…

Classification of audio sources using neural network applicable in security or military industry

In this paper, classification of audio sources is presented to supplement current work on existing system for localization of audio sources. The question of achieving the audio classification lies in the convenient discrimination of the feature vector in the feature vector space. Characteristics bas...

Full description

Saved in:
Bibliographic Details
Main Authors: Navratil, M, Dostalek, P, Kresalek, V
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 374
container_issue
container_start_page 369
container_title
container_volume
creator Navratil, M
Dostalek, P
Kresalek, V
description In this paper, classification of audio sources is presented to supplement current work on existing system for localization of audio sources. The question of achieving the audio classification lies in the convenient discrimination of the feature vector in the feature vector space. Characteristics based on frequency analysis were chosen and used as feature vector. Artificial neural network was applied in order to classify different audio classes especially from security and military areas, such as different shots and explosions. The information about specific type of a sound can trigger localization process of given audio source. Moreover, it can improve situation when guards get ready for the alert state. This classification method is currently developed as an additional part of the system for audio source hyperbolic localization; the paper also gives some basic structure of that system. Its utilization can be found for additional securing of larger objects like squares or military basis, for instance.
doi_str_mv 10.1109/CCST.2010.5678725
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5678725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5678725</ieee_id><sourcerecordid>5678725</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b8d716d8b71f8f36d7c2f3ea510dda8cbcc1b562f7a898267897ff03a4e5a603</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc2jEqH0AxAb_0CK3-MsUcRLqsSCsi6OH8iQJpWdCPXvsQTczdG9oxmNLkLXlKwpJc1t275u14wUKxVoYPIErRrQVDAhQBCmT1HFqOQ1AcHO0OX_gMtzVFECtFYS2AJV0NRKCMXJBVrl_EmKJAMOqkLvbW9yjiFaM8VxwGPAZnZxxHmck_UZzzkOH3jwczJ9wfQ9pi9sDoe-bHS9x3HA2ds5xemIx4T3sY-TSceSuzlP6XiFFsH02a_-uERvD_fb9qnevDw-t3ebOlKQUy077YAqpzugQQeuHFgWuDeSEueMtp21tJOKBTC60awU0kAIhBvhpVGEL9HN793ovd8dUtyXL3Z_xfEfmPFdaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of audio sources using neural network applicable in security or military industry</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Navratil, M ; Dostalek, P ; Kresalek, V</creator><creatorcontrib>Navratil, M ; Dostalek, P ; Kresalek, V</creatorcontrib><description>In this paper, classification of audio sources is presented to supplement current work on existing system for localization of audio sources. The question of achieving the audio classification lies in the convenient discrimination of the feature vector in the feature vector space. Characteristics based on frequency analysis were chosen and used as feature vector. Artificial neural network was applied in order to classify different audio classes especially from security and military areas, such as different shots and explosions. The information about specific type of a sound can trigger localization process of given audio source. Moreover, it can improve situation when guards get ready for the alert state. This classification method is currently developed as an additional part of the system for audio source hyperbolic localization; the paper also gives some basic structure of that system. Its utilization can be found for additional securing of larger objects like squares or military basis, for instance.</description><identifier>ISSN: 1071-6572</identifier><identifier>ISBN: 1424474035</identifier><identifier>ISBN: 9781424474035</identifier><identifier>EISSN: 2153-0742</identifier><identifier>EISBN: 9781424474028</identifier><identifier>EISBN: 9781424474011</identifier><identifier>EISBN: 1424474019</identifier><identifier>EISBN: 1424474027</identifier><identifier>DOI: 10.1109/CCST.2010.5678725</identifier><identifier>LCCN: 79-644630</identifier><language>eng</language><publisher>IEEE</publisher><subject>analysis ; Artificial neural networks ; audio ; Biological neural networks ; classification ; Classification algorithms ; Discrete Fourier transforms ; Fourier transform ; Frequency domain analysis ; Microphones ; neural network ; Neurons ; spectrum</subject><ispartof>44th Annual 2010 IEEE International Carnahan Conference on Security Technology, 2010, p.369-374</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5678725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5678725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Navratil, M</creatorcontrib><creatorcontrib>Dostalek, P</creatorcontrib><creatorcontrib>Kresalek, V</creatorcontrib><title>Classification of audio sources using neural network applicable in security or military industry</title><title>44th Annual 2010 IEEE International Carnahan Conference on Security Technology</title><addtitle>CCST</addtitle><description>In this paper, classification of audio sources is presented to supplement current work on existing system for localization of audio sources. The question of achieving the audio classification lies in the convenient discrimination of the feature vector in the feature vector space. Characteristics based on frequency analysis were chosen and used as feature vector. Artificial neural network was applied in order to classify different audio classes especially from security and military areas, such as different shots and explosions. The information about specific type of a sound can trigger localization process of given audio source. Moreover, it can improve situation when guards get ready for the alert state. This classification method is currently developed as an additional part of the system for audio source hyperbolic localization; the paper also gives some basic structure of that system. Its utilization can be found for additional securing of larger objects like squares or military basis, for instance.</description><subject>analysis</subject><subject>Artificial neural networks</subject><subject>audio</subject><subject>Biological neural networks</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Discrete Fourier transforms</subject><subject>Fourier transform</subject><subject>Frequency domain analysis</subject><subject>Microphones</subject><subject>neural network</subject><subject>Neurons</subject><subject>spectrum</subject><issn>1071-6572</issn><issn>2153-0742</issn><isbn>1424474035</isbn><isbn>9781424474035</isbn><isbn>9781424474028</isbn><isbn>9781424474011</isbn><isbn>1424474019</isbn><isbn>1424474027</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAQRc2jEqH0AxAb_0CK3-MsUcRLqsSCsi6OH8iQJpWdCPXvsQTczdG9oxmNLkLXlKwpJc1t275u14wUKxVoYPIErRrQVDAhQBCmT1HFqOQ1AcHO0OX_gMtzVFECtFYS2AJV0NRKCMXJBVrl_EmKJAMOqkLvbW9yjiFaM8VxwGPAZnZxxHmck_UZzzkOH3jwczJ9wfQ9pi9sDoe-bHS9x3HA2ds5xemIx4T3sY-TSceSuzlP6XiFFsH02a_-uERvD_fb9qnevDw-t3ebOlKQUy077YAqpzugQQeuHFgWuDeSEueMtp21tJOKBTC60awU0kAIhBvhpVGEL9HN793ovd8dUtyXL3Z_xfEfmPFdaQ</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Navratil, M</creator><creator>Dostalek, P</creator><creator>Kresalek, V</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Classification of audio sources using neural network applicable in security or military industry</title><author>Navratil, M ; Dostalek, P ; Kresalek, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b8d716d8b71f8f36d7c2f3ea510dda8cbcc1b562f7a898267897ff03a4e5a603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>analysis</topic><topic>Artificial neural networks</topic><topic>audio</topic><topic>Biological neural networks</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Discrete Fourier transforms</topic><topic>Fourier transform</topic><topic>Frequency domain analysis</topic><topic>Microphones</topic><topic>neural network</topic><topic>Neurons</topic><topic>spectrum</topic><toplevel>online_resources</toplevel><creatorcontrib>Navratil, M</creatorcontrib><creatorcontrib>Dostalek, P</creatorcontrib><creatorcontrib>Kresalek, V</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Navratil, M</au><au>Dostalek, P</au><au>Kresalek, V</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of audio sources using neural network applicable in security or military industry</atitle><btitle>44th Annual 2010 IEEE International Carnahan Conference on Security Technology</btitle><stitle>CCST</stitle><date>2010-10</date><risdate>2010</risdate><spage>369</spage><epage>374</epage><pages>369-374</pages><issn>1071-6572</issn><eissn>2153-0742</eissn><isbn>1424474035</isbn><isbn>9781424474035</isbn><eisbn>9781424474028</eisbn><eisbn>9781424474011</eisbn><eisbn>1424474019</eisbn><eisbn>1424474027</eisbn><abstract>In this paper, classification of audio sources is presented to supplement current work on existing system for localization of audio sources. The question of achieving the audio classification lies in the convenient discrimination of the feature vector in the feature vector space. Characteristics based on frequency analysis were chosen and used as feature vector. Artificial neural network was applied in order to classify different audio classes especially from security and military areas, such as different shots and explosions. The information about specific type of a sound can trigger localization process of given audio source. Moreover, it can improve situation when guards get ready for the alert state. This classification method is currently developed as an additional part of the system for audio source hyperbolic localization; the paper also gives some basic structure of that system. Its utilization can be found for additional securing of larger objects like squares or military basis, for instance.</abstract><pub>IEEE</pub><doi>10.1109/CCST.2010.5678725</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1071-6572
ispartof 44th Annual 2010 IEEE International Carnahan Conference on Security Technology, 2010, p.369-374
issn 1071-6572
2153-0742
language eng
recordid cdi_ieee_primary_5678725
source IEEE Electronic Library (IEL) Conference Proceedings
subjects analysis
Artificial neural networks
audio
Biological neural networks
classification
Classification algorithms
Discrete Fourier transforms
Fourier transform
Frequency domain analysis
Microphones
neural network
Neurons
spectrum
title Classification of audio sources using neural network applicable in security or military industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20audio%20sources%20using%20neural%20network%20applicable%20in%20security%20or%20military%20industry&rft.btitle=44th%20Annual%202010%20IEEE%20International%20Carnahan%20Conference%20on%20Security%20Technology&rft.au=Navratil,%20M&rft.date=2010-10&rft.spage=369&rft.epage=374&rft.pages=369-374&rft.issn=1071-6572&rft.eissn=2153-0742&rft.isbn=1424474035&rft.isbn_list=9781424474035&rft_id=info:doi/10.1109/CCST.2010.5678725&rft.eisbn=9781424474028&rft.eisbn_list=9781424474011&rft.eisbn_list=1424474019&rft.eisbn_list=1424474027&rft_dat=%3Cieee_6IE%3E5678725%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5b8d716d8b71f8f36d7c2f3ea510dda8cbcc1b562f7a898267897ff03a4e5a603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5678725&rfr_iscdi=true