Loading…
Estimating the implementation time for discrete-event simulation model building
There are several techniques for estimating cost and time for software development. These are known in software engineering as "software metrics." LOC (lines of code), COCOMO (COnstructive COst Model), and FPA (Function Point Analysis) are examples of such techniques. Although Discrete Eve...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1785 |
container_issue | |
container_start_page | 1774 |
container_title | |
container_volume | |
creator | Chwif, L Banks, J Barretto, M R P |
description | There are several techniques for estimating cost and time for software development. These are known in software engineering as "software metrics." LOC (lines of code), COCOMO (COnstructive COst Model), and FPA (Function Point Analysis) are examples of such techniques. Although Discrete Event Simulation Modeling (DESM) has some differences from classical software development, it is possible to draw a parallel between these techniques and DESM. This article reviews some of the metrics from software engineering, and, based on those, proposes a metric for estimating time for the implementation of a simulation model using one specific simulation software. The results obtained for 22 real simulation projects showed that the proposed technique can estimate the time for software development with acceptable accuracy (average error of 6% and maximum absolute error of 38%) for models that have less that 200 simulation objects. |
doi_str_mv | 10.1109/WSC.2010.5678891 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5678891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5678891</ieee_id><sourcerecordid>5678891</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4eb37a937f0052043b7beb3904ba0f794c21c40c8ed273063da4fac0806fb92e3</originalsourceid><addsrcrecordid>eNo1kEtLAzEUheMLbGv3gpv8gdSbd7KUoT6g0IWKy5LM3NHIPMrMVPDfG2hdHe75DgfOJeSWw4pz8Pcfr8VKQL60sc55fkbmXAmlvDOan5MZ19oxJUFfkKW37p8Zc0lmkPPMWmmuyXwcvwG401zMyHY9TqkNU-o-6fSFNLX7Blvspmz1Hc0Mad0PtEpjOeCEDH8ypGNqD80x0vYVNjQeUlPlkhtyVYdmxOVJF-T9cf1WPLPN9umleNiwxK2emMIobfDS1gBagJLRxmx5UDFAbb0qBS8VlA4rYSUYWQVVhxIcmDp6gXJB7o69CRF3-yFvGH53p8fIPy6bU7s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimating the implementation time for discrete-event simulation model building</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chwif, L ; Banks, J ; Barretto, M R P</creator><creatorcontrib>Chwif, L ; Banks, J ; Barretto, M R P</creatorcontrib><description>There are several techniques for estimating cost and time for software development. These are known in software engineering as "software metrics." LOC (lines of code), COCOMO (COnstructive COst Model), and FPA (Function Point Analysis) are examples of such techniques. Although Discrete Event Simulation Modeling (DESM) has some differences from classical software development, it is possible to draw a parallel between these techniques and DESM. This article reviews some of the metrics from software engineering, and, based on those, proposes a metric for estimating time for the implementation of a simulation model using one specific simulation software. The results obtained for 22 real simulation projects showed that the proposed technique can estimate the time for software development with acceptable accuracy (average error of 6% and maximum absolute error of 38%) for models that have less that 200 simulation objects.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5678891</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Lifting equipment ; Productivity ; Programming ; Software ; Software metrics</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.1774-1785</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5678891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5678891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chwif, L</creatorcontrib><creatorcontrib>Banks, J</creatorcontrib><creatorcontrib>Barretto, M R P</creatorcontrib><title>Estimating the implementation time for discrete-event simulation model building</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>There are several techniques for estimating cost and time for software development. These are known in software engineering as "software metrics." LOC (lines of code), COCOMO (COnstructive COst Model), and FPA (Function Point Analysis) are examples of such techniques. Although Discrete Event Simulation Modeling (DESM) has some differences from classical software development, it is possible to draw a parallel between these techniques and DESM. This article reviews some of the metrics from software engineering, and, based on those, proposes a metric for estimating time for the implementation of a simulation model using one specific simulation software. The results obtained for 22 real simulation projects showed that the proposed technique can estimate the time for software development with acceptable accuracy (average error of 6% and maximum absolute error of 38%) for models that have less that 200 simulation objects.</description><subject>Complexity theory</subject><subject>Lifting equipment</subject><subject>Productivity</subject><subject>Programming</subject><subject>Software</subject><subject>Software metrics</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEtLAzEUheMLbGv3gpv8gdSbd7KUoT6g0IWKy5LM3NHIPMrMVPDfG2hdHe75DgfOJeSWw4pz8Pcfr8VKQL60sc55fkbmXAmlvDOan5MZ19oxJUFfkKW37p8Zc0lmkPPMWmmuyXwcvwG401zMyHY9TqkNU-o-6fSFNLX7Blvspmz1Hc0Mad0PtEpjOeCEDH8ypGNqD80x0vYVNjQeUlPlkhtyVYdmxOVJF-T9cf1WPLPN9umleNiwxK2emMIobfDS1gBagJLRxmx5UDFAbb0qBS8VlA4rYSUYWQVVhxIcmDp6gXJB7o69CRF3-yFvGH53p8fIPy6bU7s</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Chwif, L</creator><creator>Banks, J</creator><creator>Barretto, M R P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>Estimating the implementation time for discrete-event simulation model building</title><author>Chwif, L ; Banks, J ; Barretto, M R P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4eb37a937f0052043b7beb3904ba0f794c21c40c8ed273063da4fac0806fb92e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Complexity theory</topic><topic>Lifting equipment</topic><topic>Productivity</topic><topic>Programming</topic><topic>Software</topic><topic>Software metrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chwif, L</creatorcontrib><creatorcontrib>Banks, J</creatorcontrib><creatorcontrib>Barretto, M R P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chwif, L</au><au>Banks, J</au><au>Barretto, M R P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimating the implementation time for discrete-event simulation model building</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-12</date><risdate>2010</risdate><spage>1774</spage><epage>1785</epage><pages>1774-1785</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>There are several techniques for estimating cost and time for software development. These are known in software engineering as "software metrics." LOC (lines of code), COCOMO (COnstructive COst Model), and FPA (Function Point Analysis) are examples of such techniques. Although Discrete Event Simulation Modeling (DESM) has some differences from classical software development, it is possible to draw a parallel between these techniques and DESM. This article reviews some of the metrics from software engineering, and, based on those, proposes a metric for estimating time for the implementation of a simulation model using one specific simulation software. The results obtained for 22 real simulation projects showed that the proposed technique can estimate the time for software development with acceptable accuracy (average error of 6% and maximum absolute error of 38%) for models that have less that 200 simulation objects.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5678891</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2010 Winter Simulation Conference, 2010, p.1774-1785 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5678891 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Complexity theory Lifting equipment Productivity Programming Software Software metrics |
title | Estimating the implementation time for discrete-event simulation model building |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimating%20the%20implementation%20time%20for%20discrete-event%20simulation%20model%20building&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Chwif,%20L&rft.date=2010-12&rft.spage=1774&rft.epage=1785&rft.pages=1774-1785&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5678891&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&rft_dat=%3Cieee_6IE%3E5678891%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4eb37a937f0052043b7beb3904ba0f794c21c40c8ed273063da4fac0806fb92e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5678891&rfr_iscdi=true |