Loading…

Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics

An observer-based adaptive neural-network robust control for a class of nonlinear time-delay systems with unmodeled dynamics. It is presented for a class of non-affine nonlinear time-delay systems with external disturbance and unavailable states. By the implicit function theorem, Taylor's formu...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang Ruliang, Jiang Huiying
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 510
container_issue
container_start_page 506
container_title
container_volume
creator Wang Ruliang
Jiang Huiying
description An observer-based adaptive neural-network robust control for a class of nonlinear time-delay systems with unmodeled dynamics. It is presented for a class of non-affine nonlinear time-delay systems with external disturbance and unavailable states. By the implicit function theorem, Taylor's formula and mean theorem, the form of the non-affine nonlinear systems is transformed into the form of affine nonlinear systems. The controller designed to attenuate the effect of external disturbance and approximation errors of the neural networks on tracking. The unknown time-delay is compensated by using appropriate Young inequality, the weight update laws based on Lyapunov stability theory can guarantee the system stability and asymptotic convergence of the tracking error to zero. Theoretical analysis and simulation results demonstrate the effectiveness of the approach.
doi_str_mv 10.1109/CIS.2010.116
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5696332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5696332</ieee_id><sourcerecordid>5696332</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c43b040426271e5bebee127a495d9391a44959f58bb2cc069af13069ad4727553</originalsourceid><addsrcrecordid>eNotj09PwjAchmuMiQa5efPSLzDs_9IjDkUSAongmXTbb7G6raQtkH17J_penjyXJ3kReqBkQikxT_lyO2HkYuoKjY2eEq2MFMxofn1xKpgQhlIxvUXjGL_IMMm0VvQOtZsiQjhByJ5thArPKntI7gR4DcdgmwHp7MM3fvfFMSac-y4F32Bf47XvGteBDXjnWsjm0Ngeb_uYoI347NIn_uhaX0EzVOd9Z1tXxnt0U9smwvifI7R7fdnlb9lqs1jms1XmDElZKXhBBBFMMU1BFlAAUKatMLIy3FA7vJGmltOiYGVJlLE15b-ohGZaSj5Cj39ZBwD7Q3CtDf1eKqM4Z_wHagVZcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang Ruliang ; Jiang Huiying</creator><creatorcontrib>Wang Ruliang ; Jiang Huiying</creatorcontrib><description>An observer-based adaptive neural-network robust control for a class of nonlinear time-delay systems with unmodeled dynamics. It is presented for a class of non-affine nonlinear time-delay systems with external disturbance and unavailable states. By the implicit function theorem, Taylor's formula and mean theorem, the form of the non-affine nonlinear systems is transformed into the form of affine nonlinear systems. The controller designed to attenuate the effect of external disturbance and approximation errors of the neural networks on tracking. The unknown time-delay is compensated by using appropriate Young inequality, the weight update laws based on Lyapunov stability theory can guarantee the system stability and asymptotic convergence of the tracking error to zero. Theoretical analysis and simulation results demonstrate the effectiveness of the approach.</description><identifier>ISBN: 9781424491148</identifier><identifier>ISBN: 1424491142</identifier><identifier>EISBN: 9780769542973</identifier><identifier>EISBN: 0769542972</identifier><identifier>DOI: 10.1109/CIS.2010.116</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive ; Adaptive systems ; Approximation error ; Artificial neural networks ; neural network ; non-affine nonlinear ; Nonlinear dynamical systems ; observer ; Observers ; Robustness</subject><ispartof>2010 International Conference on Computational Intelligence and Security, 2010, p.506-510</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5696332$$EHTML$$P50$$Gieee$$H</linktohtml><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5696332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang Ruliang</creatorcontrib><creatorcontrib>Jiang Huiying</creatorcontrib><title>Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics</title><title>2010 International Conference on Computational Intelligence and Security</title><addtitle>cis</addtitle><description>An observer-based adaptive neural-network robust control for a class of nonlinear time-delay systems with unmodeled dynamics. It is presented for a class of non-affine nonlinear time-delay systems with external disturbance and unavailable states. By the implicit function theorem, Taylor's formula and mean theorem, the form of the non-affine nonlinear systems is transformed into the form of affine nonlinear systems. The controller designed to attenuate the effect of external disturbance and approximation errors of the neural networks on tracking. The unknown time-delay is compensated by using appropriate Young inequality, the weight update laws based on Lyapunov stability theory can guarantee the system stability and asymptotic convergence of the tracking error to zero. Theoretical analysis and simulation results demonstrate the effectiveness of the approach.</description><subject>adaptive</subject><subject>Adaptive systems</subject><subject>Approximation error</subject><subject>Artificial neural networks</subject><subject>neural network</subject><subject>non-affine nonlinear</subject><subject>Nonlinear dynamical systems</subject><subject>observer</subject><subject>Observers</subject><subject>Robustness</subject><isbn>9781424491148</isbn><isbn>1424491142</isbn><isbn>9780769542973</isbn><isbn>0769542972</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09PwjAchmuMiQa5efPSLzDs_9IjDkUSAongmXTbb7G6raQtkH17J_penjyXJ3kReqBkQikxT_lyO2HkYuoKjY2eEq2MFMxofn1xKpgQhlIxvUXjGL_IMMm0VvQOtZsiQjhByJ5thArPKntI7gR4DcdgmwHp7MM3fvfFMSac-y4F32Bf47XvGteBDXjnWsjm0Ngeb_uYoI347NIn_uhaX0EzVOd9Z1tXxnt0U9smwvifI7R7fdnlb9lqs1jms1XmDElZKXhBBBFMMU1BFlAAUKatMLIy3FA7vJGmltOiYGVJlLE15b-ohGZaSj5Cj39ZBwD7Q3CtDf1eKqM4Z_wHagVZcw</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Wang Ruliang</creator><creator>Jiang Huiying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics</title><author>Wang Ruliang ; Jiang Huiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c43b040426271e5bebee127a495d9391a44959f58bb2cc069af13069ad4727553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>adaptive</topic><topic>Adaptive systems</topic><topic>Approximation error</topic><topic>Artificial neural networks</topic><topic>neural network</topic><topic>non-affine nonlinear</topic><topic>Nonlinear dynamical systems</topic><topic>observer</topic><topic>Observers</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang Ruliang</creatorcontrib><creatorcontrib>Jiang Huiying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang Ruliang</au><au>Jiang Huiying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics</atitle><btitle>2010 International Conference on Computational Intelligence and Security</btitle><stitle>cis</stitle><date>2010-12</date><risdate>2010</risdate><spage>506</spage><epage>510</epage><pages>506-510</pages><isbn>9781424491148</isbn><isbn>1424491142</isbn><eisbn>9780769542973</eisbn><eisbn>0769542972</eisbn><abstract>An observer-based adaptive neural-network robust control for a class of nonlinear time-delay systems with unmodeled dynamics. It is presented for a class of non-affine nonlinear time-delay systems with external disturbance and unavailable states. By the implicit function theorem, Taylor's formula and mean theorem, the form of the non-affine nonlinear systems is transformed into the form of affine nonlinear systems. The controller designed to attenuate the effect of external disturbance and approximation errors of the neural networks on tracking. The unknown time-delay is compensated by using appropriate Young inequality, the weight update laws based on Lyapunov stability theory can guarantee the system stability and asymptotic convergence of the tracking error to zero. Theoretical analysis and simulation results demonstrate the effectiveness of the approach.</abstract><pub>IEEE</pub><doi>10.1109/CIS.2010.116</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424491148
ispartof 2010 International Conference on Computational Intelligence and Security, 2010, p.506-510
issn
language eng
recordid cdi_ieee_primary_5696332
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptive
Adaptive systems
Approximation error
Artificial neural networks
neural network
non-affine nonlinear
Nonlinear dynamical systems
observer
Observers
Robustness
title Observer-Based Adaptive Neural Network Robust Control of Nonlinear Time-Delay Systems with Unmodeled Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T03%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Observer-Based%20Adaptive%20Neural%20Network%20Robust%20Control%20of%20Nonlinear%20Time-Delay%20Systems%20with%20Unmodeled%20Dynamics&rft.btitle=2010%20International%20Conference%20on%20Computational%20Intelligence%20and%20Security&rft.au=Wang%20Ruliang&rft.date=2010-12&rft.spage=506&rft.epage=510&rft.pages=506-510&rft.isbn=9781424491148&rft.isbn_list=1424491142&rft_id=info:doi/10.1109/CIS.2010.116&rft.eisbn=9780769542973&rft.eisbn_list=0769542972&rft_dat=%3Cieee_6IE%3E5696332%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-c43b040426271e5bebee127a495d9391a44959f58bb2cc069af13069ad4727553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5696332&rfr_iscdi=true