Loading…

Predictive var management of distributed generators

This paper presents and describes a smart predictive technique for managing reactive power from a numbers of distributed generation (DG) units connected to low voltage (LV) buses in a distribution network. The technique applies an optimization process in the first stage and in the second stage the p...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanik, M Z C, Erlich, I, Mohamed, A, Shareef, H
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 624
container_issue
container_start_page 619
container_title
container_volume
creator Wanik, M Z C
Erlich, I
Mohamed, A
Shareef, H
description This paper presents and describes a smart predictive technique for managing reactive power from a numbers of distributed generation (DG) units connected to low voltage (LV) buses in a distribution network. The technique applies an optimization process in the first stage and in the second stage the procedure is generalized using artificial neural network (ANN). The ANN is trained to replace the role of optimization process which is repetitive in nature and time consuming. The technique can speed up the time while scarifying a little accuracy. The objective is to develop an intelligent management tool that can be used to manage reactive power from a group of DG units for online management. This technique predicts the optimal reactive power fro the next time step that needs to be supplied by each DG unit with the objective of minimizing active power losses and keeping the voltage profile within the required limit. The effectiveness of the method is tested by predicting reactive power from twelve DG units simultaneously and the result is promising. Intelligent management technique presented in this paper is suitable to be integrated into online management scheme under Smart Grid concept.
doi_str_mv 10.1109/IPECON.2010.5697068
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5697068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5697068</ieee_id><sourcerecordid>5697068</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-82bc7ef5f5e0471248ee3cfb729ee055830919b4ab08757081dd8161b72d3ace3</originalsourceid><addsrcrecordid>eNo9j81Kw0AUhcc_sNY8QTd5gdR75-_OLCXUWii2i-7LJLkpIyaVSSz49hasrg6c7-PAEWKGMEcE_7TaLsrN21zCuTDWE1h3JR5QS61JeaJrMUGvqUBJcCMyT-6Pebz9Z1bei2wY3gEASVmr1USobeIm1mM8cX4KKe9CHw7ccT_mxzZv4jCmWH2N3OQH7jmF8ZiGR3HXho-Bs0tOxe5lsStfi_VmuSqf10X0MBZOVjVxa1rDoAmldsyqbiuSnhmMcQo8-kqHChwZAodN49DiWWhUqFlNxex3NjLz_jPFLqTv_eW--gEtwkoN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive var management of distributed generators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wanik, M Z C ; Erlich, I ; Mohamed, A ; Shareef, H</creator><creatorcontrib>Wanik, M Z C ; Erlich, I ; Mohamed, A ; Shareef, H</creatorcontrib><description>This paper presents and describes a smart predictive technique for managing reactive power from a numbers of distributed generation (DG) units connected to low voltage (LV) buses in a distribution network. The technique applies an optimization process in the first stage and in the second stage the procedure is generalized using artificial neural network (ANN). The ANN is trained to replace the role of optimization process which is repetitive in nature and time consuming. The technique can speed up the time while scarifying a little accuracy. The objective is to develop an intelligent management tool that can be used to manage reactive power from a group of DG units for online management. This technique predicts the optimal reactive power fro the next time step that needs to be supplied by each DG unit with the objective of minimizing active power losses and keeping the voltage profile within the required limit. The effectiveness of the method is tested by predicting reactive power from twelve DG units simultaneously and the result is promising. Intelligent management technique presented in this paper is suitable to be integrated into online management scheme under Smart Grid concept.</description><identifier>ISSN: 1947-1262</identifier><identifier>ISBN: 9781424473991</identifier><identifier>ISBN: 1424473993</identifier><identifier>EISSN: 1947-1270</identifier><identifier>EISBN: 1424473977</identifier><identifier>EISBN: 9781424473984</identifier><identifier>EISBN: 1424473985</identifier><identifier>EISBN: 9781424473977</identifier><identifier>DOI: 10.1109/IPECON.2010.5697068</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Distributed Generation ; Load modeling ; Neural Networks ; Online Management ; Optimal Reactive Power ; Optimization ; Reactive power ; Smart Grid ; Smart grids ; Substations ; Voltage control</subject><ispartof>2010 Conference Proceedings IPEC, 2010, p.619-624</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5697068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5697068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wanik, M Z C</creatorcontrib><creatorcontrib>Erlich, I</creatorcontrib><creatorcontrib>Mohamed, A</creatorcontrib><creatorcontrib>Shareef, H</creatorcontrib><title>Predictive var management of distributed generators</title><title>2010 Conference Proceedings IPEC</title><addtitle>IPECON</addtitle><description>This paper presents and describes a smart predictive technique for managing reactive power from a numbers of distributed generation (DG) units connected to low voltage (LV) buses in a distribution network. The technique applies an optimization process in the first stage and in the second stage the procedure is generalized using artificial neural network (ANN). The ANN is trained to replace the role of optimization process which is repetitive in nature and time consuming. The technique can speed up the time while scarifying a little accuracy. The objective is to develop an intelligent management tool that can be used to manage reactive power from a group of DG units for online management. This technique predicts the optimal reactive power fro the next time step that needs to be supplied by each DG unit with the objective of minimizing active power losses and keeping the voltage profile within the required limit. The effectiveness of the method is tested by predicting reactive power from twelve DG units simultaneously and the result is promising. Intelligent management technique presented in this paper is suitable to be integrated into online management scheme under Smart Grid concept.</description><subject>Artificial neural networks</subject><subject>Distributed Generation</subject><subject>Load modeling</subject><subject>Neural Networks</subject><subject>Online Management</subject><subject>Optimal Reactive Power</subject><subject>Optimization</subject><subject>Reactive power</subject><subject>Smart Grid</subject><subject>Smart grids</subject><subject>Substations</subject><subject>Voltage control</subject><issn>1947-1262</issn><issn>1947-1270</issn><isbn>9781424473991</isbn><isbn>1424473993</isbn><isbn>1424473977</isbn><isbn>9781424473984</isbn><isbn>1424473985</isbn><isbn>9781424473977</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81Kw0AUhcc_sNY8QTd5gdR75-_OLCXUWii2i-7LJLkpIyaVSSz49hasrg6c7-PAEWKGMEcE_7TaLsrN21zCuTDWE1h3JR5QS61JeaJrMUGvqUBJcCMyT-6Pebz9Z1bei2wY3gEASVmr1USobeIm1mM8cX4KKe9CHw7ccT_mxzZv4jCmWH2N3OQH7jmF8ZiGR3HXho-Bs0tOxe5lsStfi_VmuSqf10X0MBZOVjVxa1rDoAmldsyqbiuSnhmMcQo8-kqHChwZAodN49DiWWhUqFlNxex3NjLz_jPFLqTv_eW--gEtwkoN</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Wanik, M Z C</creator><creator>Erlich, I</creator><creator>Mohamed, A</creator><creator>Shareef, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Predictive var management of distributed generators</title><author>Wanik, M Z C ; Erlich, I ; Mohamed, A ; Shareef, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-82bc7ef5f5e0471248ee3cfb729ee055830919b4ab08757081dd8161b72d3ace3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Distributed Generation</topic><topic>Load modeling</topic><topic>Neural Networks</topic><topic>Online Management</topic><topic>Optimal Reactive Power</topic><topic>Optimization</topic><topic>Reactive power</topic><topic>Smart Grid</topic><topic>Smart grids</topic><topic>Substations</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Wanik, M Z C</creatorcontrib><creatorcontrib>Erlich, I</creatorcontrib><creatorcontrib>Mohamed, A</creatorcontrib><creatorcontrib>Shareef, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wanik, M Z C</au><au>Erlich, I</au><au>Mohamed, A</au><au>Shareef, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive var management of distributed generators</atitle><btitle>2010 Conference Proceedings IPEC</btitle><stitle>IPECON</stitle><date>2010-10</date><risdate>2010</risdate><spage>619</spage><epage>624</epage><pages>619-624</pages><issn>1947-1262</issn><eissn>1947-1270</eissn><isbn>9781424473991</isbn><isbn>1424473993</isbn><eisbn>1424473977</eisbn><eisbn>9781424473984</eisbn><eisbn>1424473985</eisbn><eisbn>9781424473977</eisbn><abstract>This paper presents and describes a smart predictive technique for managing reactive power from a numbers of distributed generation (DG) units connected to low voltage (LV) buses in a distribution network. The technique applies an optimization process in the first stage and in the second stage the procedure is generalized using artificial neural network (ANN). The ANN is trained to replace the role of optimization process which is repetitive in nature and time consuming. The technique can speed up the time while scarifying a little accuracy. The objective is to develop an intelligent management tool that can be used to manage reactive power from a group of DG units for online management. This technique predicts the optimal reactive power fro the next time step that needs to be supplied by each DG unit with the objective of minimizing active power losses and keeping the voltage profile within the required limit. The effectiveness of the method is tested by predicting reactive power from twelve DG units simultaneously and the result is promising. Intelligent management technique presented in this paper is suitable to be integrated into online management scheme under Smart Grid concept.</abstract><pub>IEEE</pub><doi>10.1109/IPECON.2010.5697068</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1947-1262
ispartof 2010 Conference Proceedings IPEC, 2010, p.619-624
issn 1947-1262
1947-1270
language eng
recordid cdi_ieee_primary_5697068
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Distributed Generation
Load modeling
Neural Networks
Online Management
Optimal Reactive Power
Optimization
Reactive power
Smart Grid
Smart grids
Substations
Voltage control
title Predictive var management of distributed generators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20var%20management%20of%20distributed%20generators&rft.btitle=2010%20Conference%20Proceedings%20IPEC&rft.au=Wanik,%20M%20Z%20C&rft.date=2010-10&rft.spage=619&rft.epage=624&rft.pages=619-624&rft.issn=1947-1262&rft.eissn=1947-1270&rft.isbn=9781424473991&rft.isbn_list=1424473993&rft_id=info:doi/10.1109/IPECON.2010.5697068&rft.eisbn=1424473977&rft.eisbn_list=9781424473984&rft.eisbn_list=1424473985&rft.eisbn_list=9781424473977&rft_dat=%3Cieee_6IE%3E5697068%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-82bc7ef5f5e0471248ee3cfb729ee055830919b4ab08757081dd8161b72d3ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5697068&rfr_iscdi=true