Loading…
Gene classification using appropriate feature selection method and Fukunaga-Koontz Transform kernel
In this paper, a new algorithm related with feature selection method mostly used in data mining, machine learning and pattern recognition areas is proposed. Classical Fukunaga-Koontz Transform is extended to a binary kernel classifier. We used cDNA microarrays to assess 11.000 gene expression profil...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new algorithm related with feature selection method mostly used in data mining, machine learning and pattern recognition areas is proposed. Classical Fukunaga-Koontz Transform is extended to a binary kernel classifier. We used cDNA microarrays to assess 11.000 gene expression profiles in 60 human cancer cell lines used in a drug discovery screen by the National Cancer Institute and Diffuse large B-cell lymphoma data including 62 cells and more than 4.000 genes. Proposed two stage algorithm applied on NCI60 and LYM dataset is compared with other feature selection models in details. |
---|