Loading…

Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor

Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.2213-2216
Main Authors: Felder, B, Miki, M, Zigang Deng, Tsuzuki, K, Shinohara, N, Izumi, M, Hayakawa, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3
cites cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3
container_end_page 2216
container_issue 3
container_start_page 2213
container_title IEEE transactions on applied superconductivity
container_volume 21
creator Felder, B
Miki, M
Zigang Deng
Tsuzuki, K
Shinohara, N
Izumi, M
Hayakawa, H
description Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.
doi_str_mv 10.1109/TASC.2010.2101573
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5704209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5704209</ieee_id><sourcerecordid>2559513871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLhcQxxT9xEh9LgBapwKHtOXKddUlJ7GIniL49rlr1tLuamd3VF0W3BI8IweJxMZ4XI4rDSAkmPGNn0YBwnseUE34eesxJnFPKLqMr7zcYkyRP-CBqnuEXGrttwXTIaiRR4XZ2DaZWaApN3bfxB1iDJtKj9_qv6x2gwtqmNms03_kOWqStQ0sPqDYhPanip775RtPFPOhGfTlrbB-ytrPuOrrQsvFwc6zDaPn6siim8exz8laMZ7Fied7FicKqEuHDhMoMhJBcV9mKaYGrVGcsyJQlJAeyAlEJrTmjBDKpszytKFeSDaP7w96tsz89-K7c2N6ZcLIUhKdpnnIWTORgUs5670CXW1e30u1Kgss903LPtNwzLY9MQ-bhuFh6JRvtpFG1PwVpQrOECxp8dwdfDQAnmWc4oViwf0udftc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915668653</pqid></control><display><type>article</type><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</creator><creatorcontrib>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</creatorcontrib><description>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2101573</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Closed-cycle thermosyphon ; Cooling ; Copper ; cryogenics ; Design. Technologies. Operation analysis. Testing ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electromagnets ; Electronics ; Exact sciences and technology ; Heating ; Helium ; helium-neon mixture ; High temperature superconductors ; Integrated circuits ; Magnetic heads ; Miscellaneous ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Special rotating machines ; superconducting rotating machines ; Temperature sensors ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.2213-2216</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</citedby><cites>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5704209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24274592$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Felder, B</creatorcontrib><creatorcontrib>Miki, M</creatorcontrib><creatorcontrib>Zigang Deng</creatorcontrib><creatorcontrib>Tsuzuki, K</creatorcontrib><creatorcontrib>Shinohara, N</creatorcontrib><creatorcontrib>Izumi, M</creatorcontrib><creatorcontrib>Hayakawa, H</creatorcontrib><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</description><subject>Applied sciences</subject><subject>Closed-cycle thermosyphon</subject><subject>Cooling</subject><subject>Copper</subject><subject>cryogenics</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Helium</subject><subject>helium-neon mixture</subject><subject>High temperature superconductors</subject><subject>Integrated circuits</subject><subject>Magnetic heads</subject><subject>Miscellaneous</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Special rotating machines</subject><subject>superconducting rotating machines</subject><subject>Temperature sensors</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhCMEEqXwAIiLhcQxxT9xEh9LgBapwKHtOXKddUlJ7GIniL49rlr1tLuamd3VF0W3BI8IweJxMZ4XI4rDSAkmPGNn0YBwnseUE34eesxJnFPKLqMr7zcYkyRP-CBqnuEXGrttwXTIaiRR4XZ2DaZWaApN3bfxB1iDJtKj9_qv6x2gwtqmNms03_kOWqStQ0sPqDYhPanip775RtPFPOhGfTlrbB-ytrPuOrrQsvFwc6zDaPn6siim8exz8laMZ7Fied7FicKqEuHDhMoMhJBcV9mKaYGrVGcsyJQlJAeyAlEJrTmjBDKpszytKFeSDaP7w96tsz89-K7c2N6ZcLIUhKdpnnIWTORgUs5670CXW1e30u1Kgss903LPtNwzLY9MQ-bhuFh6JRvtpFG1PwVpQrOECxp8dwdfDQAnmWc4oViwf0udftc</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Felder, B</creator><creator>Miki, M</creator><creator>Zigang Deng</creator><creator>Tsuzuki, K</creator><creator>Shinohara, N</creator><creator>Izumi, M</creator><creator>Hayakawa, H</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><author>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Closed-cycle thermosyphon</topic><topic>Cooling</topic><topic>Copper</topic><topic>cryogenics</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Helium</topic><topic>helium-neon mixture</topic><topic>High temperature superconductors</topic><topic>Integrated circuits</topic><topic>Magnetic heads</topic><topic>Miscellaneous</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Special rotating machines</topic><topic>superconducting rotating machines</topic><topic>Temperature sensors</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felder, B</creatorcontrib><creatorcontrib>Miki, M</creatorcontrib><creatorcontrib>Zigang Deng</creatorcontrib><creatorcontrib>Tsuzuki, K</creatorcontrib><creatorcontrib>Shinohara, N</creatorcontrib><creatorcontrib>Izumi, M</creatorcontrib><creatorcontrib>Hayakawa, H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felder, B</au><au>Miki, M</au><au>Zigang Deng</au><au>Tsuzuki, K</au><au>Shinohara, N</au><au>Izumi, M</au><au>Hayakawa, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>2213</spage><epage>2216</epage><pages>2213-2216</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2101573</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.2213-2216
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_5704209
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Closed-cycle thermosyphon
Cooling
Copper
cryogenics
Design. Technologies. Operation analysis. Testing
Electrical engineering. Electrical power engineering
Electrical machines
Electromagnets
Electronics
Exact sciences and technology
Heating
Helium
helium-neon mixture
High temperature superconductors
Integrated circuits
Magnetic heads
Miscellaneous
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Special rotating machines
superconducting rotating machines
Temperature sensors
Various equipment and components
title Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Cryogenic%20Helium-Neon%20Gas%20Mixture%20Cooling%20System%20for%20Use%20in%20a%20Gd-Bulk%20HTS%20Synchronous%20Motor&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Felder,%20B&rft.date=2011-06-01&rft.volume=21&rft.issue=3&rft.spage=2213&rft.epage=2216&rft.pages=2213-2216&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2101573&rft_dat=%3Cproquest_ieee_%3E2559513871%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915668653&rft_id=info:pmid/&rft_ieee_id=5704209&rfr_iscdi=true