Loading…
Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor
Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cy...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.2213-2216 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3 |
container_end_page | 2216 |
container_issue | 3 |
container_start_page | 2213 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 21 |
creator | Felder, B Miki, M Zigang Deng Tsuzuki, K Shinohara, N Izumi, M Hayakawa, H |
description | Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines. |
doi_str_mv | 10.1109/TASC.2010.2101573 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5704209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5704209</ieee_id><sourcerecordid>2559513871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLhcQxxT9xEh9LgBapwKHtOXKddUlJ7GIniL49rlr1tLuamd3VF0W3BI8IweJxMZ4XI4rDSAkmPGNn0YBwnseUE34eesxJnFPKLqMr7zcYkyRP-CBqnuEXGrttwXTIaiRR4XZ2DaZWaApN3bfxB1iDJtKj9_qv6x2gwtqmNms03_kOWqStQ0sPqDYhPanip775RtPFPOhGfTlrbB-ytrPuOrrQsvFwc6zDaPn6siim8exz8laMZ7Fied7FicKqEuHDhMoMhJBcV9mKaYGrVGcsyJQlJAeyAlEJrTmjBDKpszytKFeSDaP7w96tsz89-K7c2N6ZcLIUhKdpnnIWTORgUs5670CXW1e30u1Kgss903LPtNwzLY9MQ-bhuFh6JRvtpFG1PwVpQrOECxp8dwdfDQAnmWc4oViwf0udftc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915668653</pqid></control><display><type>article</type><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</creator><creatorcontrib>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</creatorcontrib><description>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2101573</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Closed-cycle thermosyphon ; Cooling ; Copper ; cryogenics ; Design. Technologies. Operation analysis. Testing ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electromagnets ; Electronics ; Exact sciences and technology ; Heating ; Helium ; helium-neon mixture ; High temperature superconductors ; Integrated circuits ; Magnetic heads ; Miscellaneous ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Special rotating machines ; superconducting rotating machines ; Temperature sensors ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.2213-2216</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</citedby><cites>FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5704209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24274592$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Felder, B</creatorcontrib><creatorcontrib>Miki, M</creatorcontrib><creatorcontrib>Zigang Deng</creatorcontrib><creatorcontrib>Tsuzuki, K</creatorcontrib><creatorcontrib>Shinohara, N</creatorcontrib><creatorcontrib>Izumi, M</creatorcontrib><creatorcontrib>Hayakawa, H</creatorcontrib><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</description><subject>Applied sciences</subject><subject>Closed-cycle thermosyphon</subject><subject>Cooling</subject><subject>Copper</subject><subject>cryogenics</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Helium</subject><subject>helium-neon mixture</subject><subject>High temperature superconductors</subject><subject>Integrated circuits</subject><subject>Magnetic heads</subject><subject>Miscellaneous</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Special rotating machines</subject><subject>superconducting rotating machines</subject><subject>Temperature sensors</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhCMEEqXwAIiLhcQxxT9xEh9LgBapwKHtOXKddUlJ7GIniL49rlr1tLuamd3VF0W3BI8IweJxMZ4XI4rDSAkmPGNn0YBwnseUE34eesxJnFPKLqMr7zcYkyRP-CBqnuEXGrttwXTIaiRR4XZ2DaZWaApN3bfxB1iDJtKj9_qv6x2gwtqmNms03_kOWqStQ0sPqDYhPanip775RtPFPOhGfTlrbB-ytrPuOrrQsvFwc6zDaPn6siim8exz8laMZ7Fied7FicKqEuHDhMoMhJBcV9mKaYGrVGcsyJQlJAeyAlEJrTmjBDKpszytKFeSDaP7w96tsz89-K7c2N6ZcLIUhKdpnnIWTORgUs5670CXW1e30u1Kgss903LPtNwzLY9MQ-bhuFh6JRvtpFG1PwVpQrOECxp8dwdfDQAnmWc4oViwf0udftc</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Felder, B</creator><creator>Miki, M</creator><creator>Zigang Deng</creator><creator>Tsuzuki, K</creator><creator>Shinohara, N</creator><creator>Izumi, M</creator><creator>Hayakawa, H</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</title><author>Felder, B ; Miki, M ; Zigang Deng ; Tsuzuki, K ; Shinohara, N ; Izumi, M ; Hayakawa, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Closed-cycle thermosyphon</topic><topic>Cooling</topic><topic>Copper</topic><topic>cryogenics</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Helium</topic><topic>helium-neon mixture</topic><topic>High temperature superconductors</topic><topic>Integrated circuits</topic><topic>Magnetic heads</topic><topic>Miscellaneous</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Special rotating machines</topic><topic>superconducting rotating machines</topic><topic>Temperature sensors</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felder, B</creatorcontrib><creatorcontrib>Miki, M</creatorcontrib><creatorcontrib>Zigang Deng</creatorcontrib><creatorcontrib>Tsuzuki, K</creatorcontrib><creatorcontrib>Shinohara, N</creatorcontrib><creatorcontrib>Izumi, M</creatorcontrib><creatorcontrib>Hayakawa, H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felder, B</au><au>Miki, M</au><au>Zigang Deng</au><au>Tsuzuki, K</au><au>Shinohara, N</au><au>Izumi, M</au><au>Hayakawa, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>2213</spage><epage>2216</epage><pages>2213-2216</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Temperature Superconductors (HTS) applied to rotating machines require an efficient cooling system. It is necessary to increase the maximum trapped flux density in the bulk HTS magnets and decrease the overall cooling time. In this paper, we added a gaseous helium phase to a condensed-neon closed-cycle thermosyphon. The latent heat of neon-film cooling is combined with helium's high thermal conductivity. Different mixture proportions were evaluated in terms of resistance to variable heat loads. More helium decreased the temperature variation of the evaporator. The mixture was then used to cool down a 30 kW-grade gadolinium-bulk HTS synchronous motor. The eight bulk HTS conductors of the rotor were cooled to 40 K in less than six hours. The application of this thermosyphon is envisioned for larger rotating machines.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2101573</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.2213-2216 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_5704209 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Closed-cycle thermosyphon Cooling Copper cryogenics Design. Technologies. Operation analysis. Testing Electrical engineering. Electrical power engineering Electrical machines Electromagnets Electronics Exact sciences and technology Heating Helium helium-neon mixture High temperature superconductors Integrated circuits Magnetic heads Miscellaneous Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Special rotating machines superconducting rotating machines Temperature sensors Various equipment and components |
title | Development of a Cryogenic Helium-Neon Gas Mixture Cooling System for Use in a Gd-Bulk HTS Synchronous Motor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Cryogenic%20Helium-Neon%20Gas%20Mixture%20Cooling%20System%20for%20Use%20in%20a%20Gd-Bulk%20HTS%20Synchronous%20Motor&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Felder,%20B&rft.date=2011-06-01&rft.volume=21&rft.issue=3&rft.spage=2213&rft.epage=2216&rft.pages=2213-2216&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2101573&rft_dat=%3Cproquest_ieee_%3E2559513871%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-4c0cd901442a7e99a5fd7b3f90d6f734c023418e1be9d9ff5321e7af786d25ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915668653&rft_id=info:pmid/&rft_ieee_id=5704209&rfr_iscdi=true |