Loading…

A Model-Free ON-OFF Iterative Adaptive Controller Based on Stochastic Approximation

A model-free on-off iterative adaptive controller is described for application to microscale servo systems performing repeated motions under extremely strict power constraints. The approach is motivated by the needs of piezoelectric actuators in autonomous microrobots, where power consumption in ana...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2012-01, Vol.20 (1), p.196-204
Main Authors: Hahn, B., Oldham, K. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A model-free on-off iterative adaptive controller is described for application to microscale servo systems performing repeated motions under extremely strict power constraints. The approach is motivated by the needs of piezoelectric actuators in autonomous microrobots, where power consumption in analog circuitry and/or for position sensing may be much larger than that of the actuators themselves. The control algorithm adjusts switching instances between "on" and "off" inputs to the actuator to minimize an objective function using simultaneously perturbed stochastic approximation of the gradient with just a single sensor measurement in each iteration. Convergence conditions for the gradient approximation are shown to apply when the possibility for a range of possible switching times minimizing the objective function is accounted for, while a method is proposed for avoiding local minima for plants with bounded nonlinearities. The algorithm is tested on a prototype piezoelectric microactuator.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2011.2104360