Loading…

Model reduction of polynomial dynamical systems using differential algebra

In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Motee, N, Bamieh, B, Khammash, M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6200
container_issue
container_start_page 6195
container_title
container_volume
creator Motee, N
Bamieh, B
Khammash, M
description In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.
doi_str_mv 10.1109/CDC.2010.5718171
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5718171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5718171</ieee_id><sourcerecordid>5718171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753</originalsourceid><addsrcrecordid>eNo1ULtOwzAUNQIkaOmOxOIfSLnX8SMZUXiriAUktsqxryujPKo4HfL3BFGm89QZDmPXCGtEKG-r-2otYFbKYIEGT9iqNAVKIaUxUuenbPEv1NcZuwQsMRMC9QVbpPQNAAVofcle33pPDR_IH9wY-473ge_7Zur6NtqG-6mzbXQzS1MaqU38kGK34z6GQAN142_JNjuqB3vFzoNtEq2OuGSfjw8f1XO2eX96qe42WUSjxowCWFHWwqHUtXLaOahNLstgvShkQeS8UHoOPc5WjgKMpWBAOSGUNCpfspu_3UhE2_0QWztM2-MP-Q8GgU_s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model reduction of polynomial dynamical systems using differential algebra</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Motee, N ; Bamieh, B ; Khammash, M</creator><creatorcontrib>Motee, N ; Bamieh, B ; Khammash, M</creatorcontrib><description>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 142447745X</identifier><identifier>ISBN: 9781424477456</identifier><identifier>EISBN: 9781424477463</identifier><identifier>EISBN: 1424477441</identifier><identifier>EISBN: 9781424477449</identifier><identifier>EISBN: 1424477468</identifier><identifier>DOI: 10.1109/CDC.2010.5718171</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Biological system modeling ; Manifolds ; Mathematical model ; Polynomials ; Reduced order systems ; Trajectory</subject><ispartof>49th IEEE Conference on Decision and Control (CDC), 2010, p.6195-6200</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5718171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5718171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motee, N</creatorcontrib><creatorcontrib>Bamieh, B</creatorcontrib><creatorcontrib>Khammash, M</creatorcontrib><title>Model reduction of polynomial dynamical systems using differential algebra</title><title>49th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</description><subject>Algebra</subject><subject>Biological system modeling</subject><subject>Manifolds</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Reduced order systems</subject><subject>Trajectory</subject><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><isbn>9781424477463</isbn><isbn>1424477441</isbn><isbn>9781424477449</isbn><isbn>1424477468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1ULtOwzAUNQIkaOmOxOIfSLnX8SMZUXiriAUktsqxryujPKo4HfL3BFGm89QZDmPXCGtEKG-r-2otYFbKYIEGT9iqNAVKIaUxUuenbPEv1NcZuwQsMRMC9QVbpPQNAAVofcle33pPDR_IH9wY-473ge_7Zur6NtqG-6mzbXQzS1MaqU38kGK34z6GQAN142_JNjuqB3vFzoNtEq2OuGSfjw8f1XO2eX96qe42WUSjxowCWFHWwqHUtXLaOahNLstgvShkQeS8UHoOPc5WjgKMpWBAOSGUNCpfspu_3UhE2_0QWztM2-MP-Q8GgU_s</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Motee, N</creator><creator>Bamieh, B</creator><creator>Khammash, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>Model reduction of polynomial dynamical systems using differential algebra</title><author>Motee, N ; Bamieh, B ; Khammash, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Biological system modeling</topic><topic>Manifolds</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Reduced order systems</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Motee, N</creatorcontrib><creatorcontrib>Bamieh, B</creatorcontrib><creatorcontrib>Khammash, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motee, N</au><au>Bamieh, B</au><au>Khammash, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model reduction of polynomial dynamical systems using differential algebra</atitle><btitle>49th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2010-12</date><risdate>2010</risdate><spage>6195</spage><epage>6200</epage><pages>6195-6200</pages><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><eisbn>9781424477463</eisbn><eisbn>1424477441</eisbn><eisbn>9781424477449</eisbn><eisbn>1424477468</eisbn><abstract>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2010.5718171</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 49th IEEE Conference on Decision and Control (CDC), 2010, p.6195-6200
issn 0191-2216
language eng
recordid cdi_ieee_primary_5718171
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Biological system modeling
Manifolds
Mathematical model
Polynomials
Reduced order systems
Trajectory
title Model reduction of polynomial dynamical systems using differential algebra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20reduction%20of%20polynomial%20dynamical%20systems%20using%20differential%20algebra&rft.btitle=49th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Motee,%20N&rft.date=2010-12&rft.spage=6195&rft.epage=6200&rft.pages=6195-6200&rft.issn=0191-2216&rft.isbn=142447745X&rft.isbn_list=9781424477456&rft_id=info:doi/10.1109/CDC.2010.5718171&rft.eisbn=9781424477463&rft.eisbn_list=1424477441&rft.eisbn_list=9781424477449&rft.eisbn_list=1424477468&rft_dat=%3Cieee_6IE%3E5718171%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5718171&rfr_iscdi=true