Loading…
Model reduction of polynomial dynamical systems using differential algebra
In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a sp...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6200 |
container_issue | |
container_start_page | 6195 |
container_title | |
container_volume | |
creator | Motee, N Bamieh, B Khammash, M |
description | In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems. |
doi_str_mv | 10.1109/CDC.2010.5718171 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5718171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5718171</ieee_id><sourcerecordid>5718171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753</originalsourceid><addsrcrecordid>eNo1ULtOwzAUNQIkaOmOxOIfSLnX8SMZUXiriAUktsqxryujPKo4HfL3BFGm89QZDmPXCGtEKG-r-2otYFbKYIEGT9iqNAVKIaUxUuenbPEv1NcZuwQsMRMC9QVbpPQNAAVofcle33pPDR_IH9wY-473ge_7Zur6NtqG-6mzbXQzS1MaqU38kGK34z6GQAN142_JNjuqB3vFzoNtEq2OuGSfjw8f1XO2eX96qe42WUSjxowCWFHWwqHUtXLaOahNLstgvShkQeS8UHoOPc5WjgKMpWBAOSGUNCpfspu_3UhE2_0QWztM2-MP-Q8GgU_s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model reduction of polynomial dynamical systems using differential algebra</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Motee, N ; Bamieh, B ; Khammash, M</creator><creatorcontrib>Motee, N ; Bamieh, B ; Khammash, M</creatorcontrib><description>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 142447745X</identifier><identifier>ISBN: 9781424477456</identifier><identifier>EISBN: 9781424477463</identifier><identifier>EISBN: 1424477441</identifier><identifier>EISBN: 9781424477449</identifier><identifier>EISBN: 1424477468</identifier><identifier>DOI: 10.1109/CDC.2010.5718171</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Biological system modeling ; Manifolds ; Mathematical model ; Polynomials ; Reduced order systems ; Trajectory</subject><ispartof>49th IEEE Conference on Decision and Control (CDC), 2010, p.6195-6200</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5718171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5718171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motee, N</creatorcontrib><creatorcontrib>Bamieh, B</creatorcontrib><creatorcontrib>Khammash, M</creatorcontrib><title>Model reduction of polynomial dynamical systems using differential algebra</title><title>49th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</description><subject>Algebra</subject><subject>Biological system modeling</subject><subject>Manifolds</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Reduced order systems</subject><subject>Trajectory</subject><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><isbn>9781424477463</isbn><isbn>1424477441</isbn><isbn>9781424477449</isbn><isbn>1424477468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1ULtOwzAUNQIkaOmOxOIfSLnX8SMZUXiriAUktsqxryujPKo4HfL3BFGm89QZDmPXCGtEKG-r-2otYFbKYIEGT9iqNAVKIaUxUuenbPEv1NcZuwQsMRMC9QVbpPQNAAVofcle33pPDR_IH9wY-473ge_7Zur6NtqG-6mzbXQzS1MaqU38kGK34z6GQAN142_JNjuqB3vFzoNtEq2OuGSfjw8f1XO2eX96qe42WUSjxowCWFHWwqHUtXLaOahNLstgvShkQeS8UHoOPc5WjgKMpWBAOSGUNCpfspu_3UhE2_0QWztM2-MP-Q8GgU_s</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Motee, N</creator><creator>Bamieh, B</creator><creator>Khammash, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>Model reduction of polynomial dynamical systems using differential algebra</title><author>Motee, N ; Bamieh, B ; Khammash, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Biological system modeling</topic><topic>Manifolds</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Reduced order systems</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Motee, N</creatorcontrib><creatorcontrib>Bamieh, B</creatorcontrib><creatorcontrib>Khammash, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motee, N</au><au>Bamieh, B</au><au>Khammash, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model reduction of polynomial dynamical systems using differential algebra</atitle><btitle>49th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2010-12</date><risdate>2010</risdate><spage>6195</spage><epage>6200</epage><pages>6195-6200</pages><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><eisbn>9781424477463</eisbn><eisbn>1424477441</eisbn><eisbn>9781424477449</eisbn><eisbn>1424477468</eisbn><abstract>In this paper, we propose a model reduction scheme for a special class of polynomial dynamical systems. The biochemical processes and networks are our main motivation for this study. It is well known that many biochemical processes can be represented using quasi-polynomial systems. We show that a special class of quasi-polynomial systems can be cast in the Lotka-Volterra canonical form. For a given polynomial dynamical system, we propose a procedure to verify whether a given set of polynomials represents an invariant manifold of the system. Then, we study under what algebraic conditions a Lotka-Volterra system admits invariant manifolds. Finally, we combine our results with tools from differential algebra to propose a model reduction procedure for polynomial dynamical systems.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2010.5718171</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 49th IEEE Conference on Decision and Control (CDC), 2010, p.6195-6200 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_5718171 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Biological system modeling Manifolds Mathematical model Polynomials Reduced order systems Trajectory |
title | Model reduction of polynomial dynamical systems using differential algebra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20reduction%20of%20polynomial%20dynamical%20systems%20using%20differential%20algebra&rft.btitle=49th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Motee,%20N&rft.date=2010-12&rft.spage=6195&rft.epage=6200&rft.pages=6195-6200&rft.issn=0191-2216&rft.isbn=142447745X&rft.isbn_list=9781424477456&rft_id=info:doi/10.1109/CDC.2010.5718171&rft.eisbn=9781424477463&rft.eisbn_list=1424477441&rft.eisbn_list=9781424477449&rft.eisbn_list=1424477468&rft_dat=%3Cieee_6IE%3E5718171%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ef0a29b2c146b5c6cc0b7349fad2848eecd256146d1fad31207aef705c2254753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5718171&rfr_iscdi=true |