Loading…
Short-term load forecasting using a chaotic time series
A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identifi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-ac914234a4f0231ea31ff0e704a5be4e30201cce58ccad16305e1accb5eee653 |
---|---|
cites | |
container_end_page | 440 vol.2 |
container_issue | |
container_start_page | 437 |
container_title | |
container_volume | 2 |
creator | Michanos, S.P. Tsakoumis, A.C. Fessas, P. Vladov, S.S. Mladenov, V.M. |
description | A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example. |
doi_str_mv | 10.1109/SCS.2003.1227083 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5731316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5731316</ieee_id><sourcerecordid>5731316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-ac914234a4f0231ea31ff0e704a5be4e30201cce58ccad16305e1accb5eee653</originalsourceid><addsrcrecordid>eNotjM1qwzAQhAWl0JL6XshFL2B3pZUs61hM_yCQg3MPG2WdqMR1kdRD374u7TDMx8AwQtwraJQC_zD0Q6MBsFFaO-jwSlTedbAYnXfe3Igq53dYhL61Ld4KN5znVOrCaZKXmY5ynBMHyiV-nORX_k2S4UxziUGWOLHMnCLnO3E90iVz9c-V2D0_7frXerN9eesfN3XQWpeagldGoyEzgkbFhGocgR0Ysgc2jKBBhcC2C4GOqkWwrCiEg2Xm1uJKrP9u49L3nylOlL731qHCZfwDGeBE4g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term load forecasting using a chaotic time series</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Michanos, S.P. ; Tsakoumis, A.C. ; Fessas, P. ; Vladov, S.S. ; Mladenov, V.M.</creator><creatorcontrib>Michanos, S.P. ; Tsakoumis, A.C. ; Fessas, P. ; Vladov, S.S. ; Mladenov, V.M.</creatorcontrib><description>A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.</description><identifier>ISBN: 9780780379794</identifier><identifier>ISBN: 0780379799</identifier><identifier>DOI: 10.1109/SCS.2003.1227083</identifier><language>eng</language><ispartof>Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on, 2003, Vol.2, p.437-440 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-ac914234a4f0231ea31ff0e704a5be4e30201cce58ccad16305e1accb5eee653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5731316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5731316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Michanos, S.P.</creatorcontrib><creatorcontrib>Tsakoumis, A.C.</creatorcontrib><creatorcontrib>Fessas, P.</creatorcontrib><creatorcontrib>Vladov, S.S.</creatorcontrib><creatorcontrib>Mladenov, V.M.</creatorcontrib><title>Short-term load forecasting using a chaotic time series</title><title>Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on</title><description>A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.</description><isbn>9780780379794</isbn><isbn>0780379799</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1qwzAQhAWl0JL6XshFL2B3pZUs61hM_yCQg3MPG2WdqMR1kdRD374u7TDMx8AwQtwraJQC_zD0Q6MBsFFaO-jwSlTedbAYnXfe3Igq53dYhL61Ld4KN5znVOrCaZKXmY5ynBMHyiV-nORX_k2S4UxziUGWOLHMnCLnO3E90iVz9c-V2D0_7frXerN9eesfN3XQWpeagldGoyEzgkbFhGocgR0Ysgc2jKBBhcC2C4GOqkWwrCiEg2Xm1uJKrP9u49L3nylOlL731qHCZfwDGeBE4g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Michanos, S.P.</creator><creator>Tsakoumis, A.C.</creator><creator>Fessas, P.</creator><creator>Vladov, S.S.</creator><creator>Mladenov, V.M.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Short-term load forecasting using a chaotic time series</title><author>Michanos, S.P. ; Tsakoumis, A.C. ; Fessas, P. ; Vladov, S.S. ; Mladenov, V.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-ac914234a4f0231ea31ff0e704a5be4e30201cce58ccad16305e1accb5eee653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Michanos, S.P.</creatorcontrib><creatorcontrib>Tsakoumis, A.C.</creatorcontrib><creatorcontrib>Fessas, P.</creatorcontrib><creatorcontrib>Vladov, S.S.</creatorcontrib><creatorcontrib>Mladenov, V.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michanos, S.P.</au><au>Tsakoumis, A.C.</au><au>Fessas, P.</au><au>Vladov, S.S.</au><au>Mladenov, V.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term load forecasting using a chaotic time series</atitle><btitle>Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on</btitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>437</spage><epage>440 vol.2</epage><pages>437-440 vol.2</pages><isbn>9780780379794</isbn><isbn>0780379799</isbn><abstract>A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.</abstract><doi>10.1109/SCS.2003.1227083</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780379794 |
ispartof | Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on, 2003, Vol.2, p.437-440 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5731316 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | Short-term load forecasting using a chaotic time series |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20load%20forecasting%20using%20a%20chaotic%20time%20series&rft.btitle=Signals,%20Circuits%20and%20Systems,%202003.%20SCS%202003.%20International%20Symposium%20on&rft.au=Michanos,%20S.P.&rft.date=2003&rft.volume=2&rft.spage=437&rft.epage=440%20vol.2&rft.pages=437-440%20vol.2&rft.isbn=9780780379794&rft.isbn_list=0780379799&rft_id=info:doi/10.1109/SCS.2003.1227083&rft_dat=%3Cieee_6IE%3E5731316%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-ac914234a4f0231ea31ff0e704a5be4e30201cce58ccad16305e1accb5eee653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5731316&rfr_iscdi=true |