Loading…
Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System
This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xiaoguang Qu Taidong Han Yang Cao |
description | This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure. |
doi_str_mv | 10.1109/APPEEC.2011.5749083 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5749083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5749083</ieee_id><sourcerecordid>5749083</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3</originalsourceid><addsrcrecordid>eNpVUM1OwzAYCwIkprEn2CUv0JGfr01zLNX4kTaYNLgypekXKLQNSjPQ3p4KdsEXy5ZlySZkztmCc6avis1muSwXgnG-SBVolssTMtMq5yAAMpECnP7TUp2RieCpSiCX-oLMhuGdjcgyDVpNyEsRYuMa25iWPuA-_FL89uEjuTYD1rT0fQy-bTFQ5wPdYOhMj32ka_PaY6TbQ2_fgu_9fqBrH8fIFsOXH_0hYndJzp1pB5wdeUqeb5ZP5V2yery9L4tV0nCVxiSXFVRMpeAqtFpIVuVS5jXPMpRoEGwmjHVaScVNbZSrxu3IrWbcQi3AySmZ__U2iLj7DE1nwmF3fEj-ALvrWTs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><source>IEEE Xplore All Conference Series</source><creator>Xiaoguang Qu ; Taidong Han ; Yang Cao</creator><creatorcontrib>Xiaoguang Qu ; Taidong Han ; Yang Cao</creatorcontrib><description>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</description><identifier>ISSN: 2157-4839</identifier><identifier>ISBN: 9781424462537</identifier><identifier>ISBN: 1424462533</identifier><identifier>EISBN: 9781424462544</identifier><identifier>EISBN: 142446255X</identifier><identifier>EISBN: 9781424462551</identifier><identifier>EISBN: 1424462541</identifier><identifier>DOI: 10.1109/APPEEC.2011.5749083</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Artificial neural networks ; Induction motors ; Neurons ; Rotors ; Servomotors</subject><ispartof>2011 Asia-Pacific Power and Energy Engineering Conference, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5749083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5749083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoguang Qu</creatorcontrib><creatorcontrib>Taidong Han</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><title>2011 Asia-Pacific Power and Energy Engineering Conference</title><addtitle>APPEEC</addtitle><description>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</description><subject>Adaptation model</subject><subject>Artificial neural networks</subject><subject>Induction motors</subject><subject>Neurons</subject><subject>Rotors</subject><subject>Servomotors</subject><issn>2157-4839</issn><isbn>9781424462537</isbn><isbn>1424462533</isbn><isbn>9781424462544</isbn><isbn>142446255X</isbn><isbn>9781424462551</isbn><isbn>1424462541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUM1OwzAYCwIkprEn2CUv0JGfr01zLNX4kTaYNLgypekXKLQNSjPQ3p4KdsEXy5ZlySZkztmCc6avis1muSwXgnG-SBVolssTMtMq5yAAMpECnP7TUp2RieCpSiCX-oLMhuGdjcgyDVpNyEsRYuMa25iWPuA-_FL89uEjuTYD1rT0fQy-bTFQ5wPdYOhMj32ka_PaY6TbQ2_fgu_9fqBrH8fIFsOXH_0hYndJzp1pB5wdeUqeb5ZP5V2yery9L4tV0nCVxiSXFVRMpeAqtFpIVuVS5jXPMpRoEGwmjHVaScVNbZSrxu3IrWbcQi3AySmZ__U2iLj7DE1nwmF3fEj-ALvrWTs</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Xiaoguang Qu</creator><creator>Taidong Han</creator><creator>Yang Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><author>Xiaoguang Qu ; Taidong Han ; Yang Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Artificial neural networks</topic><topic>Induction motors</topic><topic>Neurons</topic><topic>Rotors</topic><topic>Servomotors</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoguang Qu</creatorcontrib><creatorcontrib>Taidong Han</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoguang Qu</au><au>Taidong Han</au><au>Yang Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</atitle><btitle>2011 Asia-Pacific Power and Energy Engineering Conference</btitle><stitle>APPEEC</stitle><date>2011-03</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2157-4839</issn><isbn>9781424462537</isbn><isbn>1424462533</isbn><eisbn>9781424462544</eisbn><eisbn>142446255X</eisbn><eisbn>9781424462551</eisbn><eisbn>1424462541</eisbn><abstract>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</abstract><pub>IEEE</pub><doi>10.1109/APPEEC.2011.5749083</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-4839 |
ispartof | 2011 Asia-Pacific Power and Energy Engineering Conference, 2011, p.1-4 |
issn | 2157-4839 |
language | eng |
recordid | cdi_ieee_primary_5749083 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation model Artificial neural networks Induction motors Neurons Rotors Servomotors |
title | Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20Neural%20Network-Based%20Controller%20for%20Permanent%20Magnet%20Synchronous%20Motor%20Servo%20System&rft.btitle=2011%20Asia-Pacific%20Power%20and%20Energy%20Engineering%20Conference&rft.au=Xiaoguang%20Qu&rft.date=2011-03&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2157-4839&rft.isbn=9781424462537&rft.isbn_list=1424462533&rft_id=info:doi/10.1109/APPEEC.2011.5749083&rft.eisbn=9781424462544&rft.eisbn_list=142446255X&rft.eisbn_list=9781424462551&rft.eisbn_list=1424462541&rft_dat=%3Cieee_CHZPO%3E5749083%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5749083&rfr_iscdi=true |