Loading…

Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System

This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoguang Qu, Taidong Han, Yang Cao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Xiaoguang Qu
Taidong Han
Yang Cao
description This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.
doi_str_mv 10.1109/APPEEC.2011.5749083
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5749083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5749083</ieee_id><sourcerecordid>5749083</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3</originalsourceid><addsrcrecordid>eNpVUM1OwzAYCwIkprEn2CUv0JGfr01zLNX4kTaYNLgypekXKLQNSjPQ3p4KdsEXy5ZlySZkztmCc6avis1muSwXgnG-SBVolssTMtMq5yAAMpECnP7TUp2RieCpSiCX-oLMhuGdjcgyDVpNyEsRYuMa25iWPuA-_FL89uEjuTYD1rT0fQy-bTFQ5wPdYOhMj32ka_PaY6TbQ2_fgu_9fqBrH8fIFsOXH_0hYndJzp1pB5wdeUqeb5ZP5V2yery9L4tV0nCVxiSXFVRMpeAqtFpIVuVS5jXPMpRoEGwmjHVaScVNbZSrxu3IrWbcQi3AySmZ__U2iLj7DE1nwmF3fEj-ALvrWTs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><source>IEEE Xplore All Conference Series</source><creator>Xiaoguang Qu ; Taidong Han ; Yang Cao</creator><creatorcontrib>Xiaoguang Qu ; Taidong Han ; Yang Cao</creatorcontrib><description>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</description><identifier>ISSN: 2157-4839</identifier><identifier>ISBN: 9781424462537</identifier><identifier>ISBN: 1424462533</identifier><identifier>EISBN: 9781424462544</identifier><identifier>EISBN: 142446255X</identifier><identifier>EISBN: 9781424462551</identifier><identifier>EISBN: 1424462541</identifier><identifier>DOI: 10.1109/APPEEC.2011.5749083</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Artificial neural networks ; Induction motors ; Neurons ; Rotors ; Servomotors</subject><ispartof>2011 Asia-Pacific Power and Energy Engineering Conference, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5749083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5749083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoguang Qu</creatorcontrib><creatorcontrib>Taidong Han</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><title>2011 Asia-Pacific Power and Energy Engineering Conference</title><addtitle>APPEEC</addtitle><description>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</description><subject>Adaptation model</subject><subject>Artificial neural networks</subject><subject>Induction motors</subject><subject>Neurons</subject><subject>Rotors</subject><subject>Servomotors</subject><issn>2157-4839</issn><isbn>9781424462537</isbn><isbn>1424462533</isbn><isbn>9781424462544</isbn><isbn>142446255X</isbn><isbn>9781424462551</isbn><isbn>1424462541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUM1OwzAYCwIkprEn2CUv0JGfr01zLNX4kTaYNLgypekXKLQNSjPQ3p4KdsEXy5ZlySZkztmCc6avis1muSwXgnG-SBVolssTMtMq5yAAMpECnP7TUp2RieCpSiCX-oLMhuGdjcgyDVpNyEsRYuMa25iWPuA-_FL89uEjuTYD1rT0fQy-bTFQ5wPdYOhMj32ka_PaY6TbQ2_fgu_9fqBrH8fIFsOXH_0hYndJzp1pB5wdeUqeb5ZP5V2yery9L4tV0nCVxiSXFVRMpeAqtFpIVuVS5jXPMpRoEGwmjHVaScVNbZSrxu3IrWbcQi3AySmZ__U2iLj7DE1nwmF3fEj-ALvrWTs</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Xiaoguang Qu</creator><creator>Taidong Han</creator><creator>Yang Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</title><author>Xiaoguang Qu ; Taidong Han ; Yang Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Artificial neural networks</topic><topic>Induction motors</topic><topic>Neurons</topic><topic>Rotors</topic><topic>Servomotors</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoguang Qu</creatorcontrib><creatorcontrib>Taidong Han</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoguang Qu</au><au>Taidong Han</au><au>Yang Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System</atitle><btitle>2011 Asia-Pacific Power and Energy Engineering Conference</btitle><stitle>APPEEC</stitle><date>2011-03</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2157-4839</issn><isbn>9781424462537</isbn><isbn>1424462533</isbn><eisbn>9781424462544</eisbn><eisbn>142446255X</eisbn><eisbn>9781424462551</eisbn><eisbn>1424462541</eisbn><abstract>This paper implement an online training of dynamic neural networks (NNs) for identification and control of permanent magnet synchronous motor (PMSM) servo system. Utilizing two multilayer feed-forward NNs, it makes no such assumptions. The two networks work in tandem to simultaneously achieve system identification and adaptive control. The proposed control system is designed and its effectiveness in tracking application is verified by simulations. The ability of the controller to achieve the tracking process with a high degree of accuracy, even in the presence of external disturbance is also demonstrated. The simulation results clearly demonstrate the success of the proposed control structure.</abstract><pub>IEEE</pub><doi>10.1109/APPEEC.2011.5749083</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-4839
ispartof 2011 Asia-Pacific Power and Energy Engineering Conference, 2011, p.1-4
issn 2157-4839
language eng
recordid cdi_ieee_primary_5749083
source IEEE Xplore All Conference Series
subjects Adaptation model
Artificial neural networks
Induction motors
Neurons
Rotors
Servomotors
title Artificial Neural Network-Based Controller for Permanent Magnet Synchronous Motor Servo System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20Neural%20Network-Based%20Controller%20for%20Permanent%20Magnet%20Synchronous%20Motor%20Servo%20System&rft.btitle=2011%20Asia-Pacific%20Power%20and%20Energy%20Engineering%20Conference&rft.au=Xiaoguang%20Qu&rft.date=2011-03&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2157-4839&rft.isbn=9781424462537&rft.isbn_list=1424462533&rft_id=info:doi/10.1109/APPEEC.2011.5749083&rft.eisbn=9781424462544&rft.eisbn_list=142446255X&rft.eisbn_list=9781424462551&rft.eisbn_list=1424462541&rft_dat=%3Cieee_CHZPO%3E5749083%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-83b4b0754fbec9230b8338d166e3eae4c62acf97371ada7fb574e1c901c4d24f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5749083&rfr_iscdi=true