Loading…
Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds
Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebo...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 338 |
container_issue | |
container_start_page | 334 |
container_title | |
container_volume | 1 |
creator | Ghasemi, A Safabakhsh, R |
description | Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods. |
doi_str_mv | 10.1109/ICCRD.2011.5764031 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5764031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5764031</ieee_id><sourcerecordid>5764031</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3</originalsourceid><addsrcrecordid>eNpFUF9LwzAcjIigzn4BfckX6Pz9mrZJHqX-GwwEmc8jXZISXdOStMr89Has4L3cHQcHd4TcIiwRQd6vqur9cZkB4rLgZQ4Mz0giucASM5GLHLJzcj0bJvklSWL8hAllKSSKK2I_fBx7E75dNJraLpgmdKPXaa12XydJo2la4wc1uM7TMTrf0Cn5OXI0e0u70Cjvfo--VT11nvrOxQP9r4g35MKqfTTJzAuyeX7aVK_p-u1lVT2sUydhSJktZI47C0JkEoRmikNumFaIcpqiZMZrJRhq1DIXJQATUHPEDAvUtrRsQe5Otc4Ys-2Da1U4bOdn2B_aE1jc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ghasemi, A ; Safabakhsh, R</creator><creatorcontrib>Ghasemi, A ; Safabakhsh, R</creatorcontrib><description>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</description><identifier>ISBN: 1612848397</identifier><identifier>ISBN: 9781612848396</identifier><identifier>EISBN: 9781612848402</identifier><identifier>EISBN: 9781612848389</identifier><identifier>EISBN: 1612848400</identifier><identifier>EISBN: 1612848389</identifier><identifier>DOI: 10.1109/ICCRD.2011.5764031</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; codebook ; Computational modeling ; Image color analysis ; mixture of Gaussians ; motion analysis ; Neurons ; Pixel ; Quantization ; segmentation ; self organizing map ; Training</subject><ispartof>2011 3rd International Conference on Computer Research and Development, 2011, Vol.1, p.334-338</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5764031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5764031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghasemi, A</creatorcontrib><creatorcontrib>Safabakhsh, R</creatorcontrib><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><title>2011 3rd International Conference on Computer Research and Development</title><addtitle>ICCRD</addtitle><description>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</description><subject>Adaptation model</subject><subject>codebook</subject><subject>Computational modeling</subject><subject>Image color analysis</subject><subject>mixture of Gaussians</subject><subject>motion analysis</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Quantization</subject><subject>segmentation</subject><subject>self organizing map</subject><subject>Training</subject><isbn>1612848397</isbn><isbn>9781612848396</isbn><isbn>9781612848402</isbn><isbn>9781612848389</isbn><isbn>1612848400</isbn><isbn>1612848389</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUF9LwzAcjIigzn4BfckX6Pz9mrZJHqX-GwwEmc8jXZISXdOStMr89Has4L3cHQcHd4TcIiwRQd6vqur9cZkB4rLgZQ4Mz0giucASM5GLHLJzcj0bJvklSWL8hAllKSSKK2I_fBx7E75dNJraLpgmdKPXaa12XydJo2la4wc1uM7TMTrf0Cn5OXI0e0u70Cjvfo--VT11nvrOxQP9r4g35MKqfTTJzAuyeX7aVK_p-u1lVT2sUydhSJktZI47C0JkEoRmikNumFaIcpqiZMZrJRhq1DIXJQATUHPEDAvUtrRsQe5Otc4Ys-2Da1U4bOdn2B_aE1jc</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Ghasemi, A</creator><creator>Safabakhsh, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><author>Ghasemi, A ; Safabakhsh, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>codebook</topic><topic>Computational modeling</topic><topic>Image color analysis</topic><topic>mixture of Gaussians</topic><topic>motion analysis</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Quantization</topic><topic>segmentation</topic><topic>self organizing map</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi, A</creatorcontrib><creatorcontrib>Safabakhsh, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghasemi, A</au><au>Safabakhsh, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</atitle><btitle>2011 3rd International Conference on Computer Research and Development</btitle><stitle>ICCRD</stitle><date>2011-03</date><risdate>2011</risdate><volume>1</volume><spage>334</spage><epage>338</epage><pages>334-338</pages><isbn>1612848397</isbn><isbn>9781612848396</isbn><eisbn>9781612848402</eisbn><eisbn>9781612848389</eisbn><eisbn>1612848400</eisbn><eisbn>1612848389</eisbn><abstract>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCRD.2011.5764031</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612848397 |
ispartof | 2011 3rd International Conference on Computer Research and Development, 2011, Vol.1, p.334-338 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5764031 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model codebook Computational modeling Image color analysis mixture of Gaussians motion analysis Neurons Pixel Quantization segmentation self organizing map Training |
title | Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20foreground-background%20segmentation%20using%20growing%20self%20organizing%20map%20in%20noisy%20backgrounds&rft.btitle=2011%203rd%20International%20Conference%20on%20Computer%20Research%20and%20Development&rft.au=Ghasemi,%20A&rft.date=2011-03&rft.volume=1&rft.spage=334&rft.epage=338&rft.pages=334-338&rft.isbn=1612848397&rft.isbn_list=9781612848396&rft_id=info:doi/10.1109/ICCRD.2011.5764031&rft.eisbn=9781612848402&rft.eisbn_list=9781612848389&rft.eisbn_list=1612848400&rft.eisbn_list=1612848389&rft_dat=%3Cieee_6IE%3E5764031%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5764031&rfr_iscdi=true |