Loading…

Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds

Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebo...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghasemi, A, Safabakhsh, R
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 338
container_issue
container_start_page 334
container_title
container_volume 1
creator Ghasemi, A
Safabakhsh, R
description Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.
doi_str_mv 10.1109/ICCRD.2011.5764031
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5764031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5764031</ieee_id><sourcerecordid>5764031</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3</originalsourceid><addsrcrecordid>eNpFUF9LwzAcjIigzn4BfckX6Pz9mrZJHqX-GwwEmc8jXZISXdOStMr89Has4L3cHQcHd4TcIiwRQd6vqur9cZkB4rLgZQ4Mz0giucASM5GLHLJzcj0bJvklSWL8hAllKSSKK2I_fBx7E75dNJraLpgmdKPXaa12XydJo2la4wc1uM7TMTrf0Cn5OXI0e0u70Cjvfo--VT11nvrOxQP9r4g35MKqfTTJzAuyeX7aVK_p-u1lVT2sUydhSJktZI47C0JkEoRmikNumFaIcpqiZMZrJRhq1DIXJQATUHPEDAvUtrRsQe5Otc4Ys-2Da1U4bOdn2B_aE1jc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ghasemi, A ; Safabakhsh, R</creator><creatorcontrib>Ghasemi, A ; Safabakhsh, R</creatorcontrib><description>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</description><identifier>ISBN: 1612848397</identifier><identifier>ISBN: 9781612848396</identifier><identifier>EISBN: 9781612848402</identifier><identifier>EISBN: 9781612848389</identifier><identifier>EISBN: 1612848400</identifier><identifier>EISBN: 1612848389</identifier><identifier>DOI: 10.1109/ICCRD.2011.5764031</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; codebook ; Computational modeling ; Image color analysis ; mixture of Gaussians ; motion analysis ; Neurons ; Pixel ; Quantization ; segmentation ; self organizing map ; Training</subject><ispartof>2011 3rd International Conference on Computer Research and Development, 2011, Vol.1, p.334-338</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5764031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5764031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghasemi, A</creatorcontrib><creatorcontrib>Safabakhsh, R</creatorcontrib><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><title>2011 3rd International Conference on Computer Research and Development</title><addtitle>ICCRD</addtitle><description>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</description><subject>Adaptation model</subject><subject>codebook</subject><subject>Computational modeling</subject><subject>Image color analysis</subject><subject>mixture of Gaussians</subject><subject>motion analysis</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Quantization</subject><subject>segmentation</subject><subject>self organizing map</subject><subject>Training</subject><isbn>1612848397</isbn><isbn>9781612848396</isbn><isbn>9781612848402</isbn><isbn>9781612848389</isbn><isbn>1612848400</isbn><isbn>1612848389</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUF9LwzAcjIigzn4BfckX6Pz9mrZJHqX-GwwEmc8jXZISXdOStMr89Has4L3cHQcHd4TcIiwRQd6vqur9cZkB4rLgZQ4Mz0giucASM5GLHLJzcj0bJvklSWL8hAllKSSKK2I_fBx7E75dNJraLpgmdKPXaa12XydJo2la4wc1uM7TMTrf0Cn5OXI0e0u70Cjvfo--VT11nvrOxQP9r4g35MKqfTTJzAuyeX7aVK_p-u1lVT2sUydhSJktZI47C0JkEoRmikNumFaIcpqiZMZrJRhq1DIXJQATUHPEDAvUtrRsQe5Otc4Ys-2Da1U4bOdn2B_aE1jc</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Ghasemi, A</creator><creator>Safabakhsh, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</title><author>Ghasemi, A ; Safabakhsh, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>codebook</topic><topic>Computational modeling</topic><topic>Image color analysis</topic><topic>mixture of Gaussians</topic><topic>motion analysis</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Quantization</topic><topic>segmentation</topic><topic>self organizing map</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi, A</creatorcontrib><creatorcontrib>Safabakhsh, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghasemi, A</au><au>Safabakhsh, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds</atitle><btitle>2011 3rd International Conference on Computer Research and Development</btitle><stitle>ICCRD</stitle><date>2011-03</date><risdate>2011</risdate><volume>1</volume><spage>334</spage><epage>338</epage><pages>334-338</pages><isbn>1612848397</isbn><isbn>9781612848396</isbn><eisbn>9781612848402</eisbn><eisbn>9781612848389</eisbn><eisbn>1612848400</eisbn><eisbn>1612848389</eisbn><abstract>Segmentation of moving objects in an image sequence is one of the most fundamental and crucial steps in visual surveillance applications. This paper proposes a novel and efficient method for detecting moving objects in a noisy background by using a growing self organizing map to construct the codebook. The segmentation process distinguishes between those parts of the objects which move on static and dynamic background spaces such as roads and waving trees, respectively. The advantage of the proposed method is creating a small codebook based on the input pattern to model the background which results in less computational complexity and increases the speed of segmentation. We compare the proposed method with three other background subtraction algorithms and show that the proposed method has a higher precision and detection rate in comparison with other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCRD.2011.5764031</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612848397
ispartof 2011 3rd International Conference on Computer Research and Development, 2011, Vol.1, p.334-338
issn
language eng
recordid cdi_ieee_primary_5764031
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
codebook
Computational modeling
Image color analysis
mixture of Gaussians
motion analysis
Neurons
Pixel
Quantization
segmentation
self organizing map
Training
title Unsupervised foreground-background segmentation using growing self organizing map in noisy backgrounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20foreground-background%20segmentation%20using%20growing%20self%20organizing%20map%20in%20noisy%20backgrounds&rft.btitle=2011%203rd%20International%20Conference%20on%20Computer%20Research%20and%20Development&rft.au=Ghasemi,%20A&rft.date=2011-03&rft.volume=1&rft.spage=334&rft.epage=338&rft.pages=334-338&rft.isbn=1612848397&rft.isbn_list=9781612848396&rft_id=info:doi/10.1109/ICCRD.2011.5764031&rft.eisbn=9781612848402&rft.eisbn_list=9781612848389&rft.eisbn_list=1612848400&rft.eisbn_list=1612848389&rft_dat=%3Cieee_6IE%3E5764031%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3f5941cf0882908d3a704e3da119402a927ba831d1d948600380b7112151df6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5764031&rfr_iscdi=true