Loading…

Frequency-Selective Noise-Compensated Autoregressive Estimation

This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function tu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2011-10, Vol.58 (10), p.2469-2476
Main Author: Weruaga, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3
cites cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3
container_end_page 2476
container_issue 10
container_start_page 2469
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 58
creator Weruaga, L.
description This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.
doi_str_mv 10.1109/TCSI.2011.2142830
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5770189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5770189</ieee_id><sourcerecordid>2469860661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFZ_gHgpXjylzn4k2T1JCa0Wih5az8tmM5GUNFt3E6H_3oQUD55mDs87vPMQck9hTimo5122Xc8ZUDpnVDDJ4YJMaBzLCCQkl8MuVCQ5k9fkJoQ9AFPA6YS8rDx-d9jYU7TFGm1b_eDs3VUBo8wdjtgE02IxW3St8_jlMYQBWIa2Opi2cs0tuSpNHfDuPKfkc7XcZW_R5uN1nS02keVMtJHNYwlFiSxOqbR5KqE0rBRKgRCmQJPKHFKaKGMYUxapZUWeqJxDwRKZpwWfkqfx7tG7vm9o9aEKFuvaNOi6oBVLOGVSyp58_EfuXeebvpyWSgxvM9FDdISsdyF4LPXR9x_5k6agB6F6EKoHofostM88jJkKEf_4OE2BSsV_AbNLcaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894290324</pqid></control><display><type>article</type><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Weruaga, L.</creator><creatorcontrib>Weruaga, L.</creatorcontrib><description>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2011.2142830</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Autoregressive analysis ; Autoregressive processes ; Circuits ; Equations ; Foundations ; Least squares method ; Mathematical model ; Maximum likelihood estimation ; maximum-likelihood ; noise ; Optimization ; Signal to noise ratio ; Spectra ; spectral estimation ; State of the art ; Weighting functions ; Wiener filter</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2011-10, Vol.58 (10), p.2469-2476</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</citedby><cites>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5770189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Weruaga, L.</creatorcontrib><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</description><subject>Approximation</subject><subject>Autoregressive analysis</subject><subject>Autoregressive processes</subject><subject>Circuits</subject><subject>Equations</subject><subject>Foundations</subject><subject>Least squares method</subject><subject>Mathematical model</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>noise</subject><subject>Optimization</subject><subject>Signal to noise ratio</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>State of the art</subject><subject>Weighting functions</subject><subject>Wiener filter</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFZ_gHgpXjylzn4k2T1JCa0Wih5az8tmM5GUNFt3E6H_3oQUD55mDs87vPMQck9hTimo5122Xc8ZUDpnVDDJ4YJMaBzLCCQkl8MuVCQ5k9fkJoQ9AFPA6YS8rDx-d9jYU7TFGm1b_eDs3VUBo8wdjtgE02IxW3St8_jlMYQBWIa2Opi2cs0tuSpNHfDuPKfkc7XcZW_R5uN1nS02keVMtJHNYwlFiSxOqbR5KqE0rBRKgRCmQJPKHFKaKGMYUxapZUWeqJxDwRKZpwWfkqfx7tG7vm9o9aEKFuvaNOi6oBVLOGVSyp58_EfuXeebvpyWSgxvM9FDdISsdyF4LPXR9x_5k6agB6F6EKoHofostM88jJkKEf_4OE2BSsV_AbNLcaA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Weruaga, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111001</creationdate><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><author>Weruaga, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Autoregressive analysis</topic><topic>Autoregressive processes</topic><topic>Circuits</topic><topic>Equations</topic><topic>Foundations</topic><topic>Least squares method</topic><topic>Mathematical model</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>noise</topic><topic>Optimization</topic><topic>Signal to noise ratio</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>State of the art</topic><topic>Weighting functions</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weruaga, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weruaga, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Selective Noise-Compensated Autoregressive Estimation</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>10</issue><spage>2469</spage><epage>2476</epage><pages>2469-2476</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2011.2142830</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2011-10, Vol.58 (10), p.2469-2476
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_5770189
source IEEE Electronic Library (IEL) Journals
subjects Approximation
Autoregressive analysis
Autoregressive processes
Circuits
Equations
Foundations
Least squares method
Mathematical model
Maximum likelihood estimation
maximum-likelihood
noise
Optimization
Signal to noise ratio
Spectra
spectral estimation
State of the art
Weighting functions
Wiener filter
title Frequency-Selective Noise-Compensated Autoregressive Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Selective%20Noise-Compensated%20Autoregressive%20Estimation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Weruaga,%20L.&rft.date=2011-10-01&rft.volume=58&rft.issue=10&rft.spage=2469&rft.epage=2476&rft.pages=2469-2476&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2011.2142830&rft_dat=%3Cproquest_ieee_%3E2469860661%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=894290324&rft_id=info:pmid/&rft_ieee_id=5770189&rfr_iscdi=true