Loading…
Frequency-Selective Noise-Compensated Autoregressive Estimation
This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function tu...
Saved in:
Published in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2011-10, Vol.58 (10), p.2469-2476 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3 |
container_end_page | 2476 |
container_issue | 10 |
container_start_page | 2469 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 58 |
creator | Weruaga, L. |
description | This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques. |
doi_str_mv | 10.1109/TCSI.2011.2142830 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5770189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5770189</ieee_id><sourcerecordid>2469860661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFZ_gHgpXjylzn4k2T1JCa0Wih5az8tmM5GUNFt3E6H_3oQUD55mDs87vPMQck9hTimo5122Xc8ZUDpnVDDJ4YJMaBzLCCQkl8MuVCQ5k9fkJoQ9AFPA6YS8rDx-d9jYU7TFGm1b_eDs3VUBo8wdjtgE02IxW3St8_jlMYQBWIa2Opi2cs0tuSpNHfDuPKfkc7XcZW_R5uN1nS02keVMtJHNYwlFiSxOqbR5KqE0rBRKgRCmQJPKHFKaKGMYUxapZUWeqJxDwRKZpwWfkqfx7tG7vm9o9aEKFuvaNOi6oBVLOGVSyp58_EfuXeebvpyWSgxvM9FDdISsdyF4LPXR9x_5k6agB6F6EKoHofostM88jJkKEf_4OE2BSsV_AbNLcaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894290324</pqid></control><display><type>article</type><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Weruaga, L.</creator><creatorcontrib>Weruaga, L.</creatorcontrib><description>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2011.2142830</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Autoregressive analysis ; Autoregressive processes ; Circuits ; Equations ; Foundations ; Least squares method ; Mathematical model ; Maximum likelihood estimation ; maximum-likelihood ; noise ; Optimization ; Signal to noise ratio ; Spectra ; spectral estimation ; State of the art ; Weighting functions ; Wiener filter</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2011-10, Vol.58 (10), p.2469-2476</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</citedby><cites>FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5770189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Weruaga, L.</creatorcontrib><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</description><subject>Approximation</subject><subject>Autoregressive analysis</subject><subject>Autoregressive processes</subject><subject>Circuits</subject><subject>Equations</subject><subject>Foundations</subject><subject>Least squares method</subject><subject>Mathematical model</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>noise</subject><subject>Optimization</subject><subject>Signal to noise ratio</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>State of the art</subject><subject>Weighting functions</subject><subject>Wiener filter</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFZ_gHgpXjylzn4k2T1JCa0Wih5az8tmM5GUNFt3E6H_3oQUD55mDs87vPMQck9hTimo5122Xc8ZUDpnVDDJ4YJMaBzLCCQkl8MuVCQ5k9fkJoQ9AFPA6YS8rDx-d9jYU7TFGm1b_eDs3VUBo8wdjtgE02IxW3St8_jlMYQBWIa2Opi2cs0tuSpNHfDuPKfkc7XcZW_R5uN1nS02keVMtJHNYwlFiSxOqbR5KqE0rBRKgRCmQJPKHFKaKGMYUxapZUWeqJxDwRKZpwWfkqfx7tG7vm9o9aEKFuvaNOi6oBVLOGVSyp58_EfuXeebvpyWSgxvM9FDdISsdyF4LPXR9x_5k6agB6F6EKoHofostM88jJkKEf_4OE2BSsV_AbNLcaA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Weruaga, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111001</creationdate><title>Frequency-Selective Noise-Compensated Autoregressive Estimation</title><author>Weruaga, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Autoregressive analysis</topic><topic>Autoregressive processes</topic><topic>Circuits</topic><topic>Equations</topic><topic>Foundations</topic><topic>Least squares method</topic><topic>Mathematical model</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>noise</topic><topic>Optimization</topic><topic>Signal to noise ratio</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>State of the art</topic><topic>Weighting functions</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weruaga, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weruaga, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Selective Noise-Compensated Autoregressive Estimation</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>10</issue><spage>2469</spage><epage>2476</epage><pages>2469-2476</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2011.2142830</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2011-10, Vol.58 (10), p.2469-2476 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_5770189 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation Autoregressive analysis Autoregressive processes Circuits Equations Foundations Least squares method Mathematical model Maximum likelihood estimation maximum-likelihood noise Optimization Signal to noise ratio Spectra spectral estimation State of the art Weighting functions Wiener filter |
title | Frequency-Selective Noise-Compensated Autoregressive Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Selective%20Noise-Compensated%20Autoregressive%20Estimation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Weruaga,%20L.&rft.date=2011-10-01&rft.volume=58&rft.issue=10&rft.spage=2469&rft.epage=2476&rft.pages=2469-2476&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2011.2142830&rft_dat=%3Cproquest_ieee_%3E2469860661%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-cb580dfe25718cb780fa2f499044adea78b07169aa229ce1c2db69b30d268b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=894290324&rft_id=info:pmid/&rft_ieee_id=5770189&rfr_iscdi=true |