Loading…

Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology

Single-photon avalanche photodiodes (SPADs) operating in Geiger mode offer exceptional time resolution and optical sensitivity. Implementation in modern nanometer-scale complementary metal-oxide-semiconductor (CMOS) technologies to create dense high-resolution arrays requires a device structure that...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2011-07, Vol.58 (7), p.2028-2035
Main Authors: Richardson, J A, Webster, E A G, Grant, L A, Henderson, R K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-photon avalanche photodiodes (SPADs) operating in Geiger mode offer exceptional time resolution and optical sensitivity. Implementation in modern nanometer-scale complementary metal-oxide-semiconductor (CMOS) technologies to create dense high-resolution arrays requires a device structure that is scaleable down to a few micrometers. A family of three SPAD structures with sub-100-Hz mean dark count rate (DCR) is proposed in 130-nm CMOS image sensor technology. Based on a novel retrograde buried n-well guard ring, these detectors are shown to readily scale from 32 to 2 μm with improving DCR, jitter, and yield. One of these detectors is compatible with standard triple-well digital CMOS, and the others bring the first low-DCR realizations at the 130-nm node of shallow-trench-isolation-bounded and enhancement SPADs.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2011.2141138