Loading…

Wind power prediction using time-series analysis base on rough sets

In long-term prediction, dealing with the relevant factors correctly is the key point to improve the wind power prediction accuracy. The key factors that affect the wind power prediction are identified by rough set theory and then the additional inputs of the prediction model are determined. To test...

Full description

Saved in:
Bibliographic Details
Main Authors: Gao Shuang, Dong Lei, Tian Chengwei, Liao Xiaozhong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2852
container_issue
container_start_page 2847
container_title
container_volume
creator Gao Shuang
Dong Lei
Tian Chengwei
Liao Xiaozhong
description In long-term prediction, dealing with the relevant factors correctly is the key point to improve the wind power prediction accuracy. The key factors that affect the wind power prediction are identified by rough set theory and then the additional inputs of the prediction model are determined. To test the approach, the weather data from Beijing area are used for this study. The prediction results are presented and compared to the chaos neural network model and persistence model. The results show that rough set method will be a useful tool in longterm prediction of wind power.
doi_str_mv 10.1109/ICEICE.2011.5777058
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5777058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5777058</ieee_id><sourcerecordid>5777058</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-47eaee4aae8b466c9b617b66bcee79d287f882b91b0696a4ca58c78af47860ac3</originalsourceid><addsrcrecordid>eNpFj1FLwzAUhSMiqHO_YC_5A61Jm94kj1KmDga-DHwcN-ntjGxt6e2Q_XsLDjwcOHxwOHCEWGmVa63886Zez84LpXVeWWtV5W7EozaFMU6VHm7_AfS9WDJ_q1kAXlv1IOrP1DVy6H9olMNITYpT6jt55tQd5JROlDGNiVhih8cLJ5YBmeRcGfvz4UsyTfwk7lo8Mi2vuRC71_Wufs-2H2-b-mWbJa-mzFhCIoNILhiA6ANoGwBCJLK-KZxtnSuC10GBBzQRKxetw9ZYBwpjuRCrv9lERPthTCccL_vr5_IXtgpL_g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wind power prediction using time-series analysis base on rough sets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gao Shuang ; Dong Lei ; Tian Chengwei ; Liao Xiaozhong</creator><creatorcontrib>Gao Shuang ; Dong Lei ; Tian Chengwei ; Liao Xiaozhong</creatorcontrib><description>In long-term prediction, dealing with the relevant factors correctly is the key point to improve the wind power prediction accuracy. The key factors that affect the wind power prediction are identified by rough set theory and then the additional inputs of the prediction model are determined. To test the approach, the weather data from Beijing area are used for this study. The prediction results are presented and compared to the chaos neural network model and persistence model. The results show that rough set method will be a useful tool in longterm prediction of wind power.</description><identifier>ISBN: 1424480361</identifier><identifier>ISBN: 9781424480364</identifier><identifier>EISBN: 1424480396</identifier><identifier>EISBN: 9781424480395</identifier><identifier>EISBN: 1424480388</identifier><identifier>EISBN: 9781424480388</identifier><identifier>DOI: 10.1109/ICEICE.2011.5777058</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Chaos ; Information systems ; neural network ; Numerical models ; prediction model ; Predictive models ; rough set ; Wind power generation ; wind power prediction ; Wind speed</subject><ispartof>2011 International Conference on Electric Information and Control Engineering, 2011, p.2847-2852</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5777058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5777058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao Shuang</creatorcontrib><creatorcontrib>Dong Lei</creatorcontrib><creatorcontrib>Tian Chengwei</creatorcontrib><creatorcontrib>Liao Xiaozhong</creatorcontrib><title>Wind power prediction using time-series analysis base on rough sets</title><title>2011 International Conference on Electric Information and Control Engineering</title><addtitle>ICEICE</addtitle><description>In long-term prediction, dealing with the relevant factors correctly is the key point to improve the wind power prediction accuracy. The key factors that affect the wind power prediction are identified by rough set theory and then the additional inputs of the prediction model are determined. To test the approach, the weather data from Beijing area are used for this study. The prediction results are presented and compared to the chaos neural network model and persistence model. The results show that rough set method will be a useful tool in longterm prediction of wind power.</description><subject>Artificial neural networks</subject><subject>Chaos</subject><subject>Information systems</subject><subject>neural network</subject><subject>Numerical models</subject><subject>prediction model</subject><subject>Predictive models</subject><subject>rough set</subject><subject>Wind power generation</subject><subject>wind power prediction</subject><subject>Wind speed</subject><isbn>1424480361</isbn><isbn>9781424480364</isbn><isbn>1424480396</isbn><isbn>9781424480395</isbn><isbn>1424480388</isbn><isbn>9781424480388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj1FLwzAUhSMiqHO_YC_5A61Jm94kj1KmDga-DHwcN-ntjGxt6e2Q_XsLDjwcOHxwOHCEWGmVa63886Zez84LpXVeWWtV5W7EozaFMU6VHm7_AfS9WDJ_q1kAXlv1IOrP1DVy6H9olMNITYpT6jt55tQd5JROlDGNiVhih8cLJ5YBmeRcGfvz4UsyTfwk7lo8Mi2vuRC71_Wufs-2H2-b-mWbJa-mzFhCIoNILhiA6ANoGwBCJLK-KZxtnSuC10GBBzQRKxetw9ZYBwpjuRCrv9lERPthTCccL_vr5_IXtgpL_g</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Gao Shuang</creator><creator>Dong Lei</creator><creator>Tian Chengwei</creator><creator>Liao Xiaozhong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Wind power prediction using time-series analysis base on rough sets</title><author>Gao Shuang ; Dong Lei ; Tian Chengwei ; Liao Xiaozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-47eaee4aae8b466c9b617b66bcee79d287f882b91b0696a4ca58c78af47860ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Chaos</topic><topic>Information systems</topic><topic>neural network</topic><topic>Numerical models</topic><topic>prediction model</topic><topic>Predictive models</topic><topic>rough set</topic><topic>Wind power generation</topic><topic>wind power prediction</topic><topic>Wind speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao Shuang</creatorcontrib><creatorcontrib>Dong Lei</creatorcontrib><creatorcontrib>Tian Chengwei</creatorcontrib><creatorcontrib>Liao Xiaozhong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao Shuang</au><au>Dong Lei</au><au>Tian Chengwei</au><au>Liao Xiaozhong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wind power prediction using time-series analysis base on rough sets</atitle><btitle>2011 International Conference on Electric Information and Control Engineering</btitle><stitle>ICEICE</stitle><date>2011-04</date><risdate>2011</risdate><spage>2847</spage><epage>2852</epage><pages>2847-2852</pages><isbn>1424480361</isbn><isbn>9781424480364</isbn><eisbn>1424480396</eisbn><eisbn>9781424480395</eisbn><eisbn>1424480388</eisbn><eisbn>9781424480388</eisbn><abstract>In long-term prediction, dealing with the relevant factors correctly is the key point to improve the wind power prediction accuracy. The key factors that affect the wind power prediction are identified by rough set theory and then the additional inputs of the prediction model are determined. To test the approach, the weather data from Beijing area are used for this study. The prediction results are presented and compared to the chaos neural network model and persistence model. The results show that rough set method will be a useful tool in longterm prediction of wind power.</abstract><pub>IEEE</pub><doi>10.1109/ICEICE.2011.5777058</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424480361
ispartof 2011 International Conference on Electric Information and Control Engineering, 2011, p.2847-2852
issn
language eng
recordid cdi_ieee_primary_5777058
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Chaos
Information systems
neural network
Numerical models
prediction model
Predictive models
rough set
Wind power generation
wind power prediction
Wind speed
title Wind power prediction using time-series analysis base on rough sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wind%20power%20prediction%20using%20time-series%20analysis%20base%20on%20rough%20sets&rft.btitle=2011%20International%20Conference%20on%20Electric%20Information%20and%20Control%20Engineering&rft.au=Gao%20Shuang&rft.date=2011-04&rft.spage=2847&rft.epage=2852&rft.pages=2847-2852&rft.isbn=1424480361&rft.isbn_list=9781424480364&rft_id=info:doi/10.1109/ICEICE.2011.5777058&rft.eisbn=1424480396&rft.eisbn_list=9781424480395&rft.eisbn_list=1424480388&rft.eisbn_list=9781424480388&rft_dat=%3Cieee_6IE%3E5777058%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-47eaee4aae8b466c9b617b66bcee79d287f882b91b0696a4ca58c78af47860ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5777058&rfr_iscdi=true