Loading…

Bayesian approach of reliability parameter estimation using WinBUGS

Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making...

Full description

Saved in:
Bibliographic Details
Main Authors: Nama, R, Vijaya, A K, Guptan, R, Malhotra, P K, Ghadge, S G
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 150
container_issue
container_start_page 147
container_title
container_volume
creator Nama, R
Vijaya, A K
Guptan, R
Malhotra, P K
Ghadge, S G
description Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.
doi_str_mv 10.1109/ICRESH.2010.5779533
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5779533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5779533</ieee_id><sourcerecordid>5779533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433</originalsourceid><addsrcrecordid>eNpFj89Kw0AYxFdEUGufoJd9gdT9l83u0YbaFgqCrXgs326-6EqahN14yNsbaMG5DDOHYX6ELDhbcs7s8658Xx-2S8GmIi8Km0t5Qx65EkoZqaS8_Q-K35N5Sj9sktZWK_5AyhWMmAK0FPo-duC_aVfTiE0AF5owjLSHCGccMFJMQzjDELqW_qbQftHP0K4-NocncldDk3B-9Rk5vq6P5Tbbv2125cs-C5YNGVa-cEI4a6Cq60qBM4XRRaUB0TnPpOdQi1zzynjLsObOCYPMC5DS5xPJjCwuswERT32cvsTxdGWWfwS-TMk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</creator><creatorcontrib>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</creatorcontrib><description>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</description><identifier>ISBN: 1424483441</identifier><identifier>ISBN: 9781424483440</identifier><identifier>EISBN: 1424483433</identifier><identifier>EISBN: 9781424483433</identifier><identifier>DOI: 10.1109/ICRESH.2010.5779533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aleatory uncertainty ; Bayesian methods ; Bayesian Statistical Approach ; Classical Statistical Approach ; Decision making ; Epistemic uncertainty ; PSA ; Risk Informed Decision Making</subject><ispartof>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 2010, p.147-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5779533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5779533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nama, R</creatorcontrib><creatorcontrib>Vijaya, A K</creatorcontrib><creatorcontrib>Guptan, R</creatorcontrib><creatorcontrib>Malhotra, P K</creatorcontrib><creatorcontrib>Ghadge, S G</creatorcontrib><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><title>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH)</title><addtitle>ICRESH</addtitle><description>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</description><subject>Aleatory uncertainty</subject><subject>Bayesian methods</subject><subject>Bayesian Statistical Approach</subject><subject>Classical Statistical Approach</subject><subject>Decision making</subject><subject>Epistemic uncertainty</subject><subject>PSA</subject><subject>Risk Informed Decision Making</subject><isbn>1424483441</isbn><isbn>9781424483440</isbn><isbn>1424483433</isbn><isbn>9781424483433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj89Kw0AYxFdEUGufoJd9gdT9l83u0YbaFgqCrXgs326-6EqahN14yNsbaMG5DDOHYX6ELDhbcs7s8658Xx-2S8GmIi8Km0t5Qx65EkoZqaS8_Q-K35N5Sj9sktZWK_5AyhWMmAK0FPo-duC_aVfTiE0AF5owjLSHCGccMFJMQzjDELqW_qbQftHP0K4-NocncldDk3B-9Rk5vq6P5Tbbv2125cs-C5YNGVa-cEI4a6Cq60qBM4XRRaUB0TnPpOdQi1zzynjLsObOCYPMC5DS5xPJjCwuswERT32cvsTxdGWWfwS-TMk</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Nama, R</creator><creator>Vijaya, A K</creator><creator>Guptan, R</creator><creator>Malhotra, P K</creator><creator>Ghadge, S G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><author>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aleatory uncertainty</topic><topic>Bayesian methods</topic><topic>Bayesian Statistical Approach</topic><topic>Classical Statistical Approach</topic><topic>Decision making</topic><topic>Epistemic uncertainty</topic><topic>PSA</topic><topic>Risk Informed Decision Making</topic><toplevel>online_resources</toplevel><creatorcontrib>Nama, R</creatorcontrib><creatorcontrib>Vijaya, A K</creatorcontrib><creatorcontrib>Guptan, R</creatorcontrib><creatorcontrib>Malhotra, P K</creatorcontrib><creatorcontrib>Ghadge, S G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nama, R</au><au>Vijaya, A K</au><au>Guptan, R</au><au>Malhotra, P K</au><au>Ghadge, S G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian approach of reliability parameter estimation using WinBUGS</atitle><btitle>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH)</btitle><stitle>ICRESH</stitle><date>2010-12</date><risdate>2010</risdate><spage>147</spage><epage>150</epage><pages>147-150</pages><isbn>1424483441</isbn><isbn>9781424483440</isbn><eisbn>1424483433</eisbn><eisbn>9781424483433</eisbn><abstract>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</abstract><pub>IEEE</pub><doi>10.1109/ICRESH.2010.5779533</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424483441
ispartof 2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 2010, p.147-150
issn
language eng
recordid cdi_ieee_primary_5779533
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aleatory uncertainty
Bayesian methods
Bayesian Statistical Approach
Classical Statistical Approach
Decision making
Epistemic uncertainty
PSA
Risk Informed Decision Making
title Bayesian approach of reliability parameter estimation using WinBUGS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20approach%20of%20reliability%20parameter%20estimation%20using%20WinBUGS&rft.btitle=2010%202nd%20International%20Conference%20on%20Reliability,%20Safety%20and%20Hazard%20-%20Risk-Based%20Technologies%20and%20Physics-of-Failure%20Methods%20(ICRESH)&rft.au=Nama,%20R&rft.date=2010-12&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.isbn=1424483441&rft.isbn_list=9781424483440&rft_id=info:doi/10.1109/ICRESH.2010.5779533&rft.eisbn=1424483433&rft.eisbn_list=9781424483433&rft_dat=%3Cieee_6IE%3E5779533%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5779533&rfr_iscdi=true