Loading…
Bayesian approach of reliability parameter estimation using WinBUGS
Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 150 |
container_issue | |
container_start_page | 147 |
container_title | |
container_volume | |
creator | Nama, R Vijaya, A K Guptan, R Malhotra, P K Ghadge, S G |
description | Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis. |
doi_str_mv | 10.1109/ICRESH.2010.5779533 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5779533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5779533</ieee_id><sourcerecordid>5779533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433</originalsourceid><addsrcrecordid>eNpFj89Kw0AYxFdEUGufoJd9gdT9l83u0YbaFgqCrXgs326-6EqahN14yNsbaMG5DDOHYX6ELDhbcs7s8658Xx-2S8GmIi8Km0t5Qx65EkoZqaS8_Q-K35N5Sj9sktZWK_5AyhWMmAK0FPo-duC_aVfTiE0AF5owjLSHCGccMFJMQzjDELqW_qbQftHP0K4-NocncldDk3B-9Rk5vq6P5Tbbv2125cs-C5YNGVa-cEI4a6Cq60qBM4XRRaUB0TnPpOdQi1zzynjLsObOCYPMC5DS5xPJjCwuswERT32cvsTxdGWWfwS-TMk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</creator><creatorcontrib>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</creatorcontrib><description>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</description><identifier>ISBN: 1424483441</identifier><identifier>ISBN: 9781424483440</identifier><identifier>EISBN: 1424483433</identifier><identifier>EISBN: 9781424483433</identifier><identifier>DOI: 10.1109/ICRESH.2010.5779533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aleatory uncertainty ; Bayesian methods ; Bayesian Statistical Approach ; Classical Statistical Approach ; Decision making ; Epistemic uncertainty ; PSA ; Risk Informed Decision Making</subject><ispartof>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 2010, p.147-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5779533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5779533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nama, R</creatorcontrib><creatorcontrib>Vijaya, A K</creatorcontrib><creatorcontrib>Guptan, R</creatorcontrib><creatorcontrib>Malhotra, P K</creatorcontrib><creatorcontrib>Ghadge, S G</creatorcontrib><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><title>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH)</title><addtitle>ICRESH</addtitle><description>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</description><subject>Aleatory uncertainty</subject><subject>Bayesian methods</subject><subject>Bayesian Statistical Approach</subject><subject>Classical Statistical Approach</subject><subject>Decision making</subject><subject>Epistemic uncertainty</subject><subject>PSA</subject><subject>Risk Informed Decision Making</subject><isbn>1424483441</isbn><isbn>9781424483440</isbn><isbn>1424483433</isbn><isbn>9781424483433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj89Kw0AYxFdEUGufoJd9gdT9l83u0YbaFgqCrXgs326-6EqahN14yNsbaMG5DDOHYX6ELDhbcs7s8658Xx-2S8GmIi8Km0t5Qx65EkoZqaS8_Q-K35N5Sj9sktZWK_5AyhWMmAK0FPo-duC_aVfTiE0AF5owjLSHCGccMFJMQzjDELqW_qbQftHP0K4-NocncldDk3B-9Rk5vq6P5Tbbv2125cs-C5YNGVa-cEI4a6Cq60qBM4XRRaUB0TnPpOdQi1zzynjLsObOCYPMC5DS5xPJjCwuswERT32cvsTxdGWWfwS-TMk</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Nama, R</creator><creator>Vijaya, A K</creator><creator>Guptan, R</creator><creator>Malhotra, P K</creator><creator>Ghadge, S G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Bayesian approach of reliability parameter estimation using WinBUGS</title><author>Nama, R ; Vijaya, A K ; Guptan, R ; Malhotra, P K ; Ghadge, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aleatory uncertainty</topic><topic>Bayesian methods</topic><topic>Bayesian Statistical Approach</topic><topic>Classical Statistical Approach</topic><topic>Decision making</topic><topic>Epistemic uncertainty</topic><topic>PSA</topic><topic>Risk Informed Decision Making</topic><toplevel>online_resources</toplevel><creatorcontrib>Nama, R</creatorcontrib><creatorcontrib>Vijaya, A K</creatorcontrib><creatorcontrib>Guptan, R</creatorcontrib><creatorcontrib>Malhotra, P K</creatorcontrib><creatorcontrib>Ghadge, S G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nama, R</au><au>Vijaya, A K</au><au>Guptan, R</au><au>Malhotra, P K</au><au>Ghadge, S G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian approach of reliability parameter estimation using WinBUGS</atitle><btitle>2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH)</btitle><stitle>ICRESH</stitle><date>2010-12</date><risdate>2010</risdate><spage>147</spage><epage>150</epage><pages>147-150</pages><isbn>1424483441</isbn><isbn>9781424483440</isbn><eisbn>1424483433</eisbn><eisbn>9781424483433</eisbn><abstract>Uncertainties are integral part of Probabilistic Safety Assessment (PSA) and arising from incomplete knowledge, simplified assumptions/idealization in modeling complex process/phenomena and unpredictable variation in performance of the system under study. Uncertainties influence the decision making process and help to determine whether robust decision can be made or more information is needed first. Poorly informed decision based on point estimate usually is not optimized and leads to unnecessarily excess resource allocation. The distinction and quantification of uncertainties is vital for Risk Informed Decision Making. The unpredictable variations results in aleatory uncertainty and are embedded in Basic Event Mathematical Models of PSA. The parameters of these Mathematical model if not known with certainty gives rise to epistemic uncertainty and can be presented in the form of appropriate probabilistic distributions. As the part of effective implementation of Risk Informed Decision Making (RIDM) Process, systematic plant failure data collection, pre-processing and statistical analysis is proposed. This paper discusses the statistical analysis of typical failure data from Electrical Power supply at Waste Management Plant. Bayesian approach of statistics are used for the analysis.</abstract><pub>IEEE</pub><doi>10.1109/ICRESH.2010.5779533</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424483441 |
ispartof | 2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 2010, p.147-150 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5779533 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aleatory uncertainty Bayesian methods Bayesian Statistical Approach Classical Statistical Approach Decision making Epistemic uncertainty PSA Risk Informed Decision Making |
title | Bayesian approach of reliability parameter estimation using WinBUGS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20approach%20of%20reliability%20parameter%20estimation%20using%20WinBUGS&rft.btitle=2010%202nd%20International%20Conference%20on%20Reliability,%20Safety%20and%20Hazard%20-%20Risk-Based%20Technologies%20and%20Physics-of-Failure%20Methods%20(ICRESH)&rft.au=Nama,%20R&rft.date=2010-12&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.isbn=1424483441&rft.isbn_list=9781424483440&rft_id=info:doi/10.1109/ICRESH.2010.5779533&rft.eisbn=1424483433&rft.eisbn_list=9781424483433&rft_dat=%3Cieee_6IE%3E5779533%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-edc7b22b98adffd4ab87867d6aeebbc03c1af2561d8c90ef1bb28e0c2a33c5433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5779533&rfr_iscdi=true |