Loading…
12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters
A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a win...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Lutfullah, Zubair Aslam, Faizan Zaidi, Tahir Khan, Shoab A. |
description | A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives. |
doi_str_mv | 10.1109/icbbe.2011.5780231 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5780231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5780231</ieee_id><sourcerecordid>5780231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703</originalsourceid><addsrcrecordid>eNpVkFtLAzEUhOOlYK39A_qSP7A1J5fNiW_SiwoLWlvxsZzdZCXSbmU3ov57ixbBeZmHjxmGYewcxAhAuMtYlWUYSQEwMhaFVHDAhs4iaKm1EejUIetLMJDZXMqjfwzz4z8GusdOpRDOCavAnrBh172KnfIcLWKfzUHyIpDn88cFf46N337wSUihSnHbXPGnLjYvfBYovbeBTz9TSz-EU-P5IlGKXYoVrfkDtbTZ5drujPVqWndhuPcBW86my_FtVtzf3I2viyw6kTJQuqQqR0BfOona7wYh1ZZsMGWN5JxXVqOHUgqlKpACjckrZ6CmUFuhBuzitzaGEFZvbdxQ-7Xan6W-AVnYVjA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</creator><creatorcontrib>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</creatorcontrib><description>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</description><identifier>ISSN: 2151-7614</identifier><identifier>ISBN: 9781424450886</identifier><identifier>ISBN: 1424450888</identifier><identifier>EISSN: 2151-7622</identifier><identifier>EISBN: 9781424450893</identifier><identifier>EISBN: 1424450896</identifier><identifier>DOI: 10.1109/icbbe.2011.5780231</identifier><identifier>LCCN: 2009907317</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Arrays ; Electrocardiography ; Feature extraction ; Lead ; Signal processing algorithms</subject><ispartof>2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5780231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5780231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lutfullah, Zubair</creatorcontrib><creatorcontrib>Aslam, Faizan</creatorcontrib><creatorcontrib>Zaidi, Tahir</creatorcontrib><creatorcontrib>Khan, Shoab A.</creatorcontrib><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><title>2011 5th International Conference on Bioinformatics and Biomedical Engineering</title><addtitle>icbbe</addtitle><description>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</description><subject>Algorithm design and analysis</subject><subject>Arrays</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Lead</subject><subject>Signal processing algorithms</subject><issn>2151-7614</issn><issn>2151-7622</issn><isbn>9781424450886</isbn><isbn>1424450888</isbn><isbn>9781424450893</isbn><isbn>1424450896</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkFtLAzEUhOOlYK39A_qSP7A1J5fNiW_SiwoLWlvxsZzdZCXSbmU3ov57ixbBeZmHjxmGYewcxAhAuMtYlWUYSQEwMhaFVHDAhs4iaKm1EejUIetLMJDZXMqjfwzz4z8GusdOpRDOCavAnrBh172KnfIcLWKfzUHyIpDn88cFf46N337wSUihSnHbXPGnLjYvfBYovbeBTz9TSz-EU-P5IlGKXYoVrfkDtbTZ5drujPVqWndhuPcBW86my_FtVtzf3I2viyw6kTJQuqQqR0BfOona7wYh1ZZsMGWN5JxXVqOHUgqlKpACjckrZ6CmUFuhBuzitzaGEFZvbdxQ-7Xan6W-AVnYVjA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Lutfullah, Zubair</creator><creator>Aslam, Faizan</creator><creator>Zaidi, Tahir</creator><creator>Khan, Shoab A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><author>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Arrays</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Lead</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Lutfullah, Zubair</creatorcontrib><creatorcontrib>Aslam, Faizan</creatorcontrib><creatorcontrib>Zaidi, Tahir</creatorcontrib><creatorcontrib>Khan, Shoab A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lutfullah, Zubair</au><au>Aslam, Faizan</au><au>Zaidi, Tahir</au><au>Khan, Shoab A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</atitle><btitle>2011 5th International Conference on Bioinformatics and Biomedical Engineering</btitle><stitle>icbbe</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2151-7614</issn><eissn>2151-7622</eissn><isbn>9781424450886</isbn><isbn>1424450888</isbn><eisbn>9781424450893</eisbn><eisbn>1424450896</eisbn><abstract>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</abstract><pub>IEEE</pub><doi>10.1109/icbbe.2011.5780231</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-7614 |
ispartof | 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, p.1-4 |
issn | 2151-7614 2151-7622 |
language | eng |
recordid | cdi_ieee_primary_5780231 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Arrays Electrocardiography Feature extraction Lead Signal processing algorithms |
title | 12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=12%20Lead%20QRS%20Window%20Detection:%20Using%20Feature%20Extraction%20and%20Statistical%20Parameters&rft.btitle=2011%205th%20International%20Conference%20on%20Bioinformatics%20and%20Biomedical%20Engineering&rft.au=Lutfullah,%20Zubair&rft.date=2011-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2151-7614&rft.eissn=2151-7622&rft.isbn=9781424450886&rft.isbn_list=1424450888&rft_id=info:doi/10.1109/icbbe.2011.5780231&rft.eisbn=9781424450893&rft.eisbn_list=1424450896&rft_dat=%3Cieee_6IE%3E5780231%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5780231&rfr_iscdi=true |