Loading…

12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters

A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a win...

Full description

Saved in:
Bibliographic Details
Main Authors: Lutfullah, Zubair, Aslam, Faizan, Zaidi, Tahir, Khan, Shoab A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Lutfullah, Zubair
Aslam, Faizan
Zaidi, Tahir
Khan, Shoab A.
description A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.
doi_str_mv 10.1109/icbbe.2011.5780231
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5780231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5780231</ieee_id><sourcerecordid>5780231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703</originalsourceid><addsrcrecordid>eNpVkFtLAzEUhOOlYK39A_qSP7A1J5fNiW_SiwoLWlvxsZzdZCXSbmU3ov57ixbBeZmHjxmGYewcxAhAuMtYlWUYSQEwMhaFVHDAhs4iaKm1EejUIetLMJDZXMqjfwzz4z8GusdOpRDOCavAnrBh172KnfIcLWKfzUHyIpDn88cFf46N337wSUihSnHbXPGnLjYvfBYovbeBTz9TSz-EU-P5IlGKXYoVrfkDtbTZ5drujPVqWndhuPcBW86my_FtVtzf3I2viyw6kTJQuqQqR0BfOona7wYh1ZZsMGWN5JxXVqOHUgqlKpACjckrZ6CmUFuhBuzitzaGEFZvbdxQ-7Xan6W-AVnYVjA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</creator><creatorcontrib>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</creatorcontrib><description>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</description><identifier>ISSN: 2151-7614</identifier><identifier>ISBN: 9781424450886</identifier><identifier>ISBN: 1424450888</identifier><identifier>EISSN: 2151-7622</identifier><identifier>EISBN: 9781424450893</identifier><identifier>EISBN: 1424450896</identifier><identifier>DOI: 10.1109/icbbe.2011.5780231</identifier><identifier>LCCN: 2009907317</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Arrays ; Electrocardiography ; Feature extraction ; Lead ; Signal processing algorithms</subject><ispartof>2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5780231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5780231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lutfullah, Zubair</creatorcontrib><creatorcontrib>Aslam, Faizan</creatorcontrib><creatorcontrib>Zaidi, Tahir</creatorcontrib><creatorcontrib>Khan, Shoab A.</creatorcontrib><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><title>2011 5th International Conference on Bioinformatics and Biomedical Engineering</title><addtitle>icbbe</addtitle><description>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</description><subject>Algorithm design and analysis</subject><subject>Arrays</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Lead</subject><subject>Signal processing algorithms</subject><issn>2151-7614</issn><issn>2151-7622</issn><isbn>9781424450886</isbn><isbn>1424450888</isbn><isbn>9781424450893</isbn><isbn>1424450896</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkFtLAzEUhOOlYK39A_qSP7A1J5fNiW_SiwoLWlvxsZzdZCXSbmU3ov57ixbBeZmHjxmGYewcxAhAuMtYlWUYSQEwMhaFVHDAhs4iaKm1EejUIetLMJDZXMqjfwzz4z8GusdOpRDOCavAnrBh172KnfIcLWKfzUHyIpDn88cFf46N337wSUihSnHbXPGnLjYvfBYovbeBTz9TSz-EU-P5IlGKXYoVrfkDtbTZ5drujPVqWndhuPcBW86my_FtVtzf3I2viyw6kTJQuqQqR0BfOona7wYh1ZZsMGWN5JxXVqOHUgqlKpACjckrZ6CmUFuhBuzitzaGEFZvbdxQ-7Xan6W-AVnYVjA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Lutfullah, Zubair</creator><creator>Aslam, Faizan</creator><creator>Zaidi, Tahir</creator><creator>Khan, Shoab A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</title><author>Lutfullah, Zubair ; Aslam, Faizan ; Zaidi, Tahir ; Khan, Shoab A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Arrays</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Lead</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Lutfullah, Zubair</creatorcontrib><creatorcontrib>Aslam, Faizan</creatorcontrib><creatorcontrib>Zaidi, Tahir</creatorcontrib><creatorcontrib>Khan, Shoab A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lutfullah, Zubair</au><au>Aslam, Faizan</au><au>Zaidi, Tahir</au><au>Khan, Shoab A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters</atitle><btitle>2011 5th International Conference on Bioinformatics and Biomedical Engineering</btitle><stitle>icbbe</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2151-7614</issn><eissn>2151-7622</eissn><isbn>9781424450886</isbn><isbn>1424450888</isbn><eisbn>9781424450893</eisbn><eisbn>1424450896</eisbn><abstract>A 12-lead Electrocardiogram (ECG) is the fundamental clinical test that a doctor uses to check for any abnormalities in the cardiac muscle. The QRS complex has relatively higher energy and is the most prominent component of an ECG signal. This paper proposes a novel robust technique to extract a window signal that contains this QRS complex of a noisy 12 lead Electrocardiogram (ECG). Algorithms for further automated analysis depend on the correct detection of the QRS complex. An ECG signal is processed to create a feature signal with relatively high amplitudes in the QRS complex region. Statistical parameters and multiple stages of different thresholds are used in combination with conventional feature enhancement techniques to identify correct QRS complexes from any false positives.</abstract><pub>IEEE</pub><doi>10.1109/icbbe.2011.5780231</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-7614
ispartof 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, p.1-4
issn 2151-7614
2151-7622
language eng
recordid cdi_ieee_primary_5780231
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Arrays
Electrocardiography
Feature extraction
Lead
Signal processing algorithms
title 12 Lead QRS Window Detection: Using Feature Extraction and Statistical Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=12%20Lead%20QRS%20Window%20Detection:%20Using%20Feature%20Extraction%20and%20Statistical%20Parameters&rft.btitle=2011%205th%20International%20Conference%20on%20Bioinformatics%20and%20Biomedical%20Engineering&rft.au=Lutfullah,%20Zubair&rft.date=2011-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2151-7614&rft.eissn=2151-7622&rft.isbn=9781424450886&rft.isbn_list=1424450888&rft_id=info:doi/10.1109/icbbe.2011.5780231&rft.eisbn=9781424450893&rft.eisbn_list=1424450896&rft_dat=%3Cieee_6IE%3E5780231%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-134bac6818db9284d6688af7a7e5bf8a99d3748d1b2033c1208556c951faef703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5780231&rfr_iscdi=true