Loading…

SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems

SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Yubazaki, N., Yi, J., Otani, M., Hirota, K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 550
container_issue
container_start_page 545
container_title
container_volume
creator Yubazaki, N.
Yi, J.
Otani, M.
Hirota, K.
description SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.
doi_str_mv 10.1109/AFSS.1996.583707
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_583707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>583707</ieee_id><sourcerecordid>583707</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3</originalsourceid><addsrcrecordid>eNplkE1LxDAYhAMiKGvv4ik3T61JkyZ9j8vi6sKKYPW8pMkbifSLJh66v97F9eYwMIcZnsMQcstZwTmDh_W2aQoOoIqqFprpC5KBrtnJQqhal1cki_GLnSSFVKK6JrHZvb3cR2rHYUCb0FH_fTwuNAweZxws0n502FEzOBpSpGaaumBNCuMQaRqpD3NM-Tg7nGlnPmlcYsI-_u4jnqjuf3lDLr3pImZ_uSIf28f3zXO-f33abdb7PHAmU66dRqeMEgYkOG_BgWytBG3AGqZLqQxaLCvnQSGWnLVeQAVclqwVLTNiRe7O3ICIh2kOvZmXw_kZ8QMtrVuO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</creator><creatorcontrib>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</creatorcontrib><description>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</description><identifier>ISBN: 9780780336872</identifier><identifier>ISBN: 0780336879</identifier><identifier>DOI: 10.1109/AFSS.1996.583707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fuzzy systems ; System performance</subject><ispartof>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, 1996, p.545-550</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/583707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/583707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yubazaki, N.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Otani, M.</creatorcontrib><creatorcontrib>Hirota, K.</creatorcontrib><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><title>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium</title><addtitle>AFSS</addtitle><description>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</description><subject>Fuzzy systems</subject><subject>System performance</subject><isbn>9780780336872</isbn><isbn>0780336879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNplkE1LxDAYhAMiKGvv4ik3T61JkyZ9j8vi6sKKYPW8pMkbifSLJh66v97F9eYwMIcZnsMQcstZwTmDh_W2aQoOoIqqFprpC5KBrtnJQqhal1cki_GLnSSFVKK6JrHZvb3cR2rHYUCb0FH_fTwuNAweZxws0n502FEzOBpSpGaaumBNCuMQaRqpD3NM-Tg7nGlnPmlcYsI-_u4jnqjuf3lDLr3pImZ_uSIf28f3zXO-f33abdb7PHAmU66dRqeMEgYkOG_BgWytBG3AGqZLqQxaLCvnQSGWnLVeQAVclqwVLTNiRe7O3ICIh2kOvZmXw_kZ8QMtrVuO</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Yubazaki, N.</creator><creator>Yi, J.</creator><creator>Otani, M.</creator><creator>Hirota, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><author>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Fuzzy systems</topic><topic>System performance</topic><toplevel>online_resources</toplevel><creatorcontrib>Yubazaki, N.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Otani, M.</creatorcontrib><creatorcontrib>Hirota, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yubazaki, N.</au><au>Yi, J.</au><au>Otani, M.</au><au>Hirota, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</atitle><btitle>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium</btitle><stitle>AFSS</stitle><date>1996</date><risdate>1996</risdate><spage>545</spage><epage>550</epage><pages>545-550</pages><isbn>9780780336872</isbn><isbn>0780336879</isbn><abstract>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</abstract><pub>IEEE</pub><doi>10.1109/AFSS.1996.583707</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780336872
ispartof Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, 1996, p.545-550
issn
language eng
recordid cdi_ieee_primary_583707
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fuzzy systems
System performance
title SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SIRM's%20connected%20fuzzy%20inference%20model%20and%20its%20applications%20to%20first-order%20lag%20systems%20and%20second-order%20lag%20systems&rft.btitle=Soft%20Computing%20in%20Intelligent%20Systems%20and%20Information%20Processing.%20Proceedings%20of%20the%201996%20Asian%20Fuzzy%20Systems%20Symposium&rft.au=Yubazaki,%20N.&rft.date=1996&rft.spage=545&rft.epage=550&rft.pages=545-550&rft.isbn=9780780336872&rft.isbn_list=0780336879&rft_id=info:doi/10.1109/AFSS.1996.583707&rft_dat=%3Cieee_6IE%3E583707%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=583707&rfr_iscdi=true