Loading…
SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems
SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 550 |
container_issue | |
container_start_page | 545 |
container_title | |
container_volume | |
creator | Yubazaki, N. Yi, J. Otani, M. Hirota, K. |
description | SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model. |
doi_str_mv | 10.1109/AFSS.1996.583707 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_583707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>583707</ieee_id><sourcerecordid>583707</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3</originalsourceid><addsrcrecordid>eNplkE1LxDAYhAMiKGvv4ik3T61JkyZ9j8vi6sKKYPW8pMkbifSLJh66v97F9eYwMIcZnsMQcstZwTmDh_W2aQoOoIqqFprpC5KBrtnJQqhal1cki_GLnSSFVKK6JrHZvb3cR2rHYUCb0FH_fTwuNAweZxws0n502FEzOBpSpGaaumBNCuMQaRqpD3NM-Tg7nGlnPmlcYsI-_u4jnqjuf3lDLr3pImZ_uSIf28f3zXO-f33abdb7PHAmU66dRqeMEgYkOG_BgWytBG3AGqZLqQxaLCvnQSGWnLVeQAVclqwVLTNiRe7O3ICIh2kOvZmXw_kZ8QMtrVuO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</creator><creatorcontrib>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</creatorcontrib><description>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</description><identifier>ISBN: 9780780336872</identifier><identifier>ISBN: 0780336879</identifier><identifier>DOI: 10.1109/AFSS.1996.583707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fuzzy systems ; System performance</subject><ispartof>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, 1996, p.545-550</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/583707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/583707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yubazaki, N.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Otani, M.</creatorcontrib><creatorcontrib>Hirota, K.</creatorcontrib><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><title>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium</title><addtitle>AFSS</addtitle><description>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</description><subject>Fuzzy systems</subject><subject>System performance</subject><isbn>9780780336872</isbn><isbn>0780336879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNplkE1LxDAYhAMiKGvv4ik3T61JkyZ9j8vi6sKKYPW8pMkbifSLJh66v97F9eYwMIcZnsMQcstZwTmDh_W2aQoOoIqqFprpC5KBrtnJQqhal1cki_GLnSSFVKK6JrHZvb3cR2rHYUCb0FH_fTwuNAweZxws0n502FEzOBpSpGaaumBNCuMQaRqpD3NM-Tg7nGlnPmlcYsI-_u4jnqjuf3lDLr3pImZ_uSIf28f3zXO-f33abdb7PHAmU66dRqeMEgYkOG_BgWytBG3AGqZLqQxaLCvnQSGWnLVeQAVclqwVLTNiRe7O3ICIh2kOvZmXw_kZ8QMtrVuO</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Yubazaki, N.</creator><creator>Yi, J.</creator><creator>Otani, M.</creator><creator>Hirota, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</title><author>Yubazaki, N. ; Yi, J. ; Otani, M. ; Hirota, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Fuzzy systems</topic><topic>System performance</topic><toplevel>online_resources</toplevel><creatorcontrib>Yubazaki, N.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Otani, M.</creatorcontrib><creatorcontrib>Hirota, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yubazaki, N.</au><au>Yi, J.</au><au>Otani, M.</au><au>Hirota, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems</atitle><btitle>Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium</btitle><stitle>AFSS</stitle><date>1996</date><risdate>1996</risdate><spage>545</spage><epage>550</epage><pages>545-550</pages><isbn>9780780336872</isbn><isbn>0780336879</isbn><abstract>SIRMs (Single Input Rule Modules) Connected Fuzzy inference Model is proposed for multiple input fuzzy control. In the model, the importance degree is defined first and single input fuzzy rule module is constructed for each input item. The model output is obtained by summarizing the production of the importance degree and the fuzzy inference result of each module. The proposed model needs both very few rules and parameters and the rules can be designed much easier. Moreover, the role of each input item can be strengthened or weakened by changing its importance degree according to experts' intuitive experiences. The proposed model is applied to typical first order lag systems and second order lag systems to confirm the improvement in control performance compared with the conventional model.</abstract><pub>IEEE</pub><doi>10.1109/AFSS.1996.583707</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780336872 |
ispartof | Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, 1996, p.545-550 |
issn | |
language | eng |
recordid | cdi_ieee_primary_583707 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fuzzy systems System performance |
title | SIRM's connected fuzzy inference model and its applications to first-order lag systems and second-order lag systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SIRM's%20connected%20fuzzy%20inference%20model%20and%20its%20applications%20to%20first-order%20lag%20systems%20and%20second-order%20lag%20systems&rft.btitle=Soft%20Computing%20in%20Intelligent%20Systems%20and%20Information%20Processing.%20Proceedings%20of%20the%201996%20Asian%20Fuzzy%20Systems%20Symposium&rft.au=Yubazaki,%20N.&rft.date=1996&rft.spage=545&rft.epage=550&rft.pages=545-550&rft.isbn=9780780336872&rft.isbn_list=0780336879&rft_id=info:doi/10.1109/AFSS.1996.583707&rft_dat=%3Cieee_6IE%3E583707%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-7d7ed6a63a949dfc9d94bc497a9ca07246aece25df96ee210bf39591420b3b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=583707&rfr_iscdi=true |