Loading…
A comparison of two gyrator realization as regarding the energy flow control from one port to the other
Two types of gyrators that can be used for controlling the energy transfer between two sub networks are analyzed in this paper. The first one operates time-continuously and is implemented using a LM 13700 operational transconductance amplifier (OTA). Under PSpice simulation and experimentally gather...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 621 |
container_issue | |
container_start_page | 617 |
container_title | |
container_volume | |
creator | Tatai, I |
description | Two types of gyrators that can be used for controlling the energy transfer between two sub networks are analyzed in this paper. The first one operates time-continuously and is implemented using a LM 13700 operational transconductance amplifier (OTA). Under PSpice simulation and experimentally gathered data the antireciprocity of this gyrator has been verified. The main advantage of this realization is that the energy flow from one port to the other can be simply controlled by modifying the bias currents of the OTAs. The second type is a commutation-operated double-bridge DC-DC converter. The energy flow in this case can be easily controlled by modifying the switching delay of between the bridges. |
doi_str_mv | 10.1109/SACI.2011.5873077 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5873077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5873077</ieee_id><sourcerecordid>5873077</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b7f297bc97754f98b2cd140ca21696755eed1586eb5e956ca898b070a14fdd33</originalsourceid><addsrcrecordid>eNo1UM1KxDAYjIigrn0A8ZIX6JqkTb_kWIo_Cwse3IO3JW2_1EjblDSw1Ke36DqHGYYZ5jCE3HO25Zzpx_ey2m0F43wrFWQM4ILc8lzkueYMPi5JokH9ewXXJJnnL7aiEKCkviFdSRs_TCa42Y_UWxpPnnZLMNEHGtD07ttEt0ZmXm1nQuvGjsZPpDhi6BZqe39aJ8YYfE9t8AP1I9LJh0ij_y36lcIdubKmnzE564Ycnp8O1Wu6f3vZVeU-dZrFVNVghYa60QAyt1rVoml5zhojeKELkBKx5VIVWEvUsmiMWjsMmOG5bdss25CHv1mHiMcpuMGE5Xi-JvsBIv1Y2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison of two gyrator realization as regarding the energy flow control from one port to the other</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tatai, I</creator><creatorcontrib>Tatai, I</creatorcontrib><description>Two types of gyrators that can be used for controlling the energy transfer between two sub networks are analyzed in this paper. The first one operates time-continuously and is implemented using a LM 13700 operational transconductance amplifier (OTA). Under PSpice simulation and experimentally gathered data the antireciprocity of this gyrator has been verified. The main advantage of this realization is that the energy flow from one port to the other can be simply controlled by modifying the bias currents of the OTAs. The second type is a commutation-operated double-bridge DC-DC converter. The energy flow in this case can be easily controlled by modifying the switching delay of between the bridges.</description><identifier>ISBN: 9781424491087</identifier><identifier>ISBN: 1424491088</identifier><identifier>EISBN: 142449107X</identifier><identifier>EISBN: 9781424491070</identifier><identifier>EISBN: 1424491096</identifier><identifier>EISBN: 9781424491094</identifier><identifier>DOI: 10.1109/SACI.2011.5873077</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bridge circuits ; Equations ; Equivalent circuits ; gyrator ; Gyrators ; Mathematical model ; operational transconductance amplifier (OTA.) ; Transconductance ; Voltage control ; voltage controlled current sourse</subject><ispartof>2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), 2011, p.617-621</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5873077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5873077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tatai, I</creatorcontrib><title>A comparison of two gyrator realization as regarding the energy flow control from one port to the other</title><title>2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)</title><addtitle>SACI</addtitle><description>Two types of gyrators that can be used for controlling the energy transfer between two sub networks are analyzed in this paper. The first one operates time-continuously and is implemented using a LM 13700 operational transconductance amplifier (OTA). Under PSpice simulation and experimentally gathered data the antireciprocity of this gyrator has been verified. The main advantage of this realization is that the energy flow from one port to the other can be simply controlled by modifying the bias currents of the OTAs. The second type is a commutation-operated double-bridge DC-DC converter. The energy flow in this case can be easily controlled by modifying the switching delay of between the bridges.</description><subject>Bridge circuits</subject><subject>Equations</subject><subject>Equivalent circuits</subject><subject>gyrator</subject><subject>Gyrators</subject><subject>Mathematical model</subject><subject>operational transconductance amplifier (OTA.)</subject><subject>Transconductance</subject><subject>Voltage control</subject><subject>voltage controlled current sourse</subject><isbn>9781424491087</isbn><isbn>1424491088</isbn><isbn>142449107X</isbn><isbn>9781424491070</isbn><isbn>1424491096</isbn><isbn>9781424491094</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1KxDAYjIigrn0A8ZIX6JqkTb_kWIo_Cwse3IO3JW2_1EjblDSw1Ke36DqHGYYZ5jCE3HO25Zzpx_ey2m0F43wrFWQM4ILc8lzkueYMPi5JokH9ewXXJJnnL7aiEKCkviFdSRs_TCa42Y_UWxpPnnZLMNEHGtD07ttEt0ZmXm1nQuvGjsZPpDhi6BZqe39aJ8YYfE9t8AP1I9LJh0ij_y36lcIdubKmnzE564Ycnp8O1Wu6f3vZVeU-dZrFVNVghYa60QAyt1rVoml5zhojeKELkBKx5VIVWEvUsmiMWjsMmOG5bdss25CHv1mHiMcpuMGE5Xi-JvsBIv1Y2A</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Tatai, I</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>A comparison of two gyrator realization as regarding the energy flow control from one port to the other</title><author>Tatai, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b7f297bc97754f98b2cd140ca21696755eed1586eb5e956ca898b070a14fdd33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bridge circuits</topic><topic>Equations</topic><topic>Equivalent circuits</topic><topic>gyrator</topic><topic>Gyrators</topic><topic>Mathematical model</topic><topic>operational transconductance amplifier (OTA.)</topic><topic>Transconductance</topic><topic>Voltage control</topic><topic>voltage controlled current sourse</topic><toplevel>online_resources</toplevel><creatorcontrib>Tatai, I</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tatai, I</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of two gyrator realization as regarding the energy flow control from one port to the other</atitle><btitle>2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)</btitle><stitle>SACI</stitle><date>2011-05</date><risdate>2011</risdate><spage>617</spage><epage>621</epage><pages>617-621</pages><isbn>9781424491087</isbn><isbn>1424491088</isbn><eisbn>142449107X</eisbn><eisbn>9781424491070</eisbn><eisbn>1424491096</eisbn><eisbn>9781424491094</eisbn><abstract>Two types of gyrators that can be used for controlling the energy transfer between two sub networks are analyzed in this paper. The first one operates time-continuously and is implemented using a LM 13700 operational transconductance amplifier (OTA). Under PSpice simulation and experimentally gathered data the antireciprocity of this gyrator has been verified. The main advantage of this realization is that the energy flow from one port to the other can be simply controlled by modifying the bias currents of the OTAs. The second type is a commutation-operated double-bridge DC-DC converter. The energy flow in this case can be easily controlled by modifying the switching delay of between the bridges.</abstract><pub>IEEE</pub><doi>10.1109/SACI.2011.5873077</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424491087 |
ispartof | 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), 2011, p.617-621 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5873077 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bridge circuits Equations Equivalent circuits gyrator Gyrators Mathematical model operational transconductance amplifier (OTA.) Transconductance Voltage control voltage controlled current sourse |
title | A comparison of two gyrator realization as regarding the energy flow control from one port to the other |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20two%20gyrator%20realization%20as%20regarding%20the%20energy%20flow%20control%20from%20one%20port%20to%20the%20other&rft.btitle=2011%206th%20IEEE%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20(SACI)&rft.au=Tatai,%20I&rft.date=2011-05&rft.spage=617&rft.epage=621&rft.pages=617-621&rft.isbn=9781424491087&rft.isbn_list=1424491088&rft_id=info:doi/10.1109/SACI.2011.5873077&rft.eisbn=142449107X&rft.eisbn_list=9781424491070&rft.eisbn_list=1424491096&rft.eisbn_list=9781424491094&rft_dat=%3Cieee_6IE%3E5873077%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8b7f297bc97754f98b2cd140ca21696755eed1586eb5e956ca898b070a14fdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5873077&rfr_iscdi=true |