Loading…

A novel intelligent decision support tool for average wind speed clustering

The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techn...

Full description

Saved in:
Bibliographic Details
Main Authors: Colak, I., Kabalci, E., Yesilbudak, M., Kahraman, H. T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2014
container_issue
container_start_page 2010
container_title
container_volume
creator Colak, I.
Kabalci, E.
Yesilbudak, M.
Kahraman, H. T.
description The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techniques are required to be used. In this study, the agglomerative hierarchical clustering method which is one of the data mining techniques is used to analyze the provinces located in the Central Anatolia Region of Turkey in terms of average wind speed. Nearest neighbor algorithm is used as the clustering algorithm. Euclidean, Manhattan and Minkowski distance metrics are used determine the optimum hierarchical clustering results in this algorithm. The achieved clustering results based on Euclidean distance metric provide the optimum inferences to expert according to other distance metrics.
doi_str_mv 10.1109/ICPE.2011.5944482
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5944482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5944482</ieee_id><sourcerecordid>5944482</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-32f02a1c5fc2024d03ec0f7cafd72b5b7e847c50ccb0bd4586698c9daecbe8573</originalsourceid><addsrcrecordid>eNpVkNFKwzAYhSMqOGYfQLzJC7T-SZMmuRxl6nCgF7sfafJ3RGpSmm7i2ztwN56bw3dz-DiEPDCoGAPztGk_1hUHxipphBCaX5HCKM0axrUwUqnrf6zFDVlwJqFsQOk7UuT8Cec0jZHAFuRtRWM64UBDnHEYwgHjTD26kEOKNB_HMU0znVMaaJ8mak842QPS7xA9zSOip2445hmnEA_35La3Q8bi0kuye17v2tdy-_6yaVfbMhiYy5r3wC1zsnccuPBQo4NeOdt7xTvZKdRCOQnOddB5IfVZVTvjLboOtVT1kjz-zQZE3I9T-LLTz_7yRv0Lv21SKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel intelligent decision support tool for average wind speed clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Colak, I. ; Kabalci, E. ; Yesilbudak, M. ; Kahraman, H. T.</creator><creatorcontrib>Colak, I. ; Kabalci, E. ; Yesilbudak, M. ; Kahraman, H. T.</creatorcontrib><description>The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techniques are required to be used. In this study, the agglomerative hierarchical clustering method which is one of the data mining techniques is used to analyze the provinces located in the Central Anatolia Region of Turkey in terms of average wind speed. Nearest neighbor algorithm is used as the clustering algorithm. Euclidean, Manhattan and Minkowski distance metrics are used determine the optimum hierarchical clustering results in this algorithm. The achieved clustering results based on Euclidean distance metric provide the optimum inferences to expert according to other distance metrics.</description><identifier>ISSN: 2150-6078</identifier><identifier>ISBN: 9781612849584</identifier><identifier>ISBN: 161284958X</identifier><identifier>EISBN: 9781612849577</identifier><identifier>EISBN: 1612849563</identifier><identifier>EISBN: 9781612849560</identifier><identifier>EISBN: 1612849571</identifier><identifier>DOI: 10.1109/ICPE.2011.5944482</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Clustering methods ; Data mining ; Euclidean distance ; hierarchical clustering ; Renewable energy ; wind energy ; Wind speed</subject><ispartof>8th International Conference on Power Electronics - ECCE Asia, 2011, p.2010-2014</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5944482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5944482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colak, I.</creatorcontrib><creatorcontrib>Kabalci, E.</creatorcontrib><creatorcontrib>Yesilbudak, M.</creatorcontrib><creatorcontrib>Kahraman, H. T.</creatorcontrib><title>A novel intelligent decision support tool for average wind speed clustering</title><title>8th International Conference on Power Electronics - ECCE Asia</title><addtitle>ICPE</addtitle><description>The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techniques are required to be used. In this study, the agglomerative hierarchical clustering method which is one of the data mining techniques is used to analyze the provinces located in the Central Anatolia Region of Turkey in terms of average wind speed. Nearest neighbor algorithm is used as the clustering algorithm. Euclidean, Manhattan and Minkowski distance metrics are used determine the optimum hierarchical clustering results in this algorithm. The achieved clustering results based on Euclidean distance metric provide the optimum inferences to expert according to other distance metrics.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Data mining</subject><subject>Euclidean distance</subject><subject>hierarchical clustering</subject><subject>Renewable energy</subject><subject>wind energy</subject><subject>Wind speed</subject><issn>2150-6078</issn><isbn>9781612849584</isbn><isbn>161284958X</isbn><isbn>9781612849577</isbn><isbn>1612849563</isbn><isbn>9781612849560</isbn><isbn>1612849571</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkNFKwzAYhSMqOGYfQLzJC7T-SZMmuRxl6nCgF7sfafJ3RGpSmm7i2ztwN56bw3dz-DiEPDCoGAPztGk_1hUHxipphBCaX5HCKM0axrUwUqnrf6zFDVlwJqFsQOk7UuT8Cec0jZHAFuRtRWM64UBDnHEYwgHjTD26kEOKNB_HMU0znVMaaJ8mak842QPS7xA9zSOip2445hmnEA_35La3Q8bi0kuye17v2tdy-_6yaVfbMhiYy5r3wC1zsnccuPBQo4NeOdt7xTvZKdRCOQnOddB5IfVZVTvjLboOtVT1kjz-zQZE3I9T-LLTz_7yRv0Lv21SKw</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Colak, I.</creator><creator>Kabalci, E.</creator><creator>Yesilbudak, M.</creator><creator>Kahraman, H. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>A novel intelligent decision support tool for average wind speed clustering</title><author>Colak, I. ; Kabalci, E. ; Yesilbudak, M. ; Kahraman, H. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-32f02a1c5fc2024d03ec0f7cafd72b5b7e847c50ccb0bd4586698c9daecbe8573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Data mining</topic><topic>Euclidean distance</topic><topic>hierarchical clustering</topic><topic>Renewable energy</topic><topic>wind energy</topic><topic>Wind speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Colak, I.</creatorcontrib><creatorcontrib>Kabalci, E.</creatorcontrib><creatorcontrib>Yesilbudak, M.</creatorcontrib><creatorcontrib>Kahraman, H. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colak, I.</au><au>Kabalci, E.</au><au>Yesilbudak, M.</au><au>Kahraman, H. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel intelligent decision support tool for average wind speed clustering</atitle><btitle>8th International Conference on Power Electronics - ECCE Asia</btitle><stitle>ICPE</stitle><date>2011-05</date><risdate>2011</risdate><spage>2010</spage><epage>2014</epage><pages>2010-2014</pages><issn>2150-6078</issn><isbn>9781612849584</isbn><isbn>161284958X</isbn><eisbn>9781612849577</eisbn><eisbn>1612849563</eisbn><eisbn>9781612849560</eisbn><eisbn>1612849571</eisbn><abstract>The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techniques are required to be used. In this study, the agglomerative hierarchical clustering method which is one of the data mining techniques is used to analyze the provinces located in the Central Anatolia Region of Turkey in terms of average wind speed. Nearest neighbor algorithm is used as the clustering algorithm. Euclidean, Manhattan and Minkowski distance metrics are used determine the optimum hierarchical clustering results in this algorithm. The achieved clustering results based on Euclidean distance metric provide the optimum inferences to expert according to other distance metrics.</abstract><pub>IEEE</pub><doi>10.1109/ICPE.2011.5944482</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2150-6078
ispartof 8th International Conference on Power Electronics - ECCE Asia, 2011, p.2010-2014
issn 2150-6078
language eng
recordid cdi_ieee_primary_5944482
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Clustering methods
Data mining
Euclidean distance
hierarchical clustering
Renewable energy
wind energy
Wind speed
title A novel intelligent decision support tool for average wind speed clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20intelligent%20decision%20support%20tool%20for%20average%20wind%20speed%20clustering&rft.btitle=8th%20International%20Conference%20on%20Power%20Electronics%20-%20ECCE%20Asia&rft.au=Colak,%20I.&rft.date=2011-05&rft.spage=2010&rft.epage=2014&rft.pages=2010-2014&rft.issn=2150-6078&rft.isbn=9781612849584&rft.isbn_list=161284958X&rft_id=info:doi/10.1109/ICPE.2011.5944482&rft.eisbn=9781612849577&rft.eisbn_list=1612849563&rft.eisbn_list=9781612849560&rft.eisbn_list=1612849571&rft_dat=%3Cieee_6IE%3E5944482%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-32f02a1c5fc2024d03ec0f7cafd72b5b7e847c50ccb0bd4586698c9daecbe8573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5944482&rfr_iscdi=true