Loading…

Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification

Classification system and textural features play increasingly an important role in remotely sensed images classification and many pattern recognition applications. In this work, we propose to fuse the information outputed by 3 well-known classifiers: Support Vector Machines (SVM), Neural Network (NN...

Full description

Saved in:
Bibliographic Details
Main Authors: Mejdoubi, M., Aboutajdine, D., Kerroum, M. A., Hammouch, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Mejdoubi, M.
Aboutajdine, D.
Kerroum, M. A.
Hammouch, A.
description Classification system and textural features play increasingly an important role in remotely sensed images classification and many pattern recognition applications. In this work, we propose to fuse the information outputed by 3 well-known classifiers: Support Vector Machines (SVM), Neural Network (NN) and Parzen Window (PW). These classifiers were combined according to the Dempster-Shafer theory. The input textural feature used are selected according the GMMFS algorithm. The classification results show that the proposed method gives high performances than those of classifiers separately considered.
doi_str_mv 10.1109/ICMCS.2011.5945724
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5945724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5945724</ieee_id><sourcerecordid>5945724</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b49a8c2ee673f2f53e88d6d2315e5cbb55b2933de678f324e86c3ae30dfd025d3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQNEJIQMkPwMU_kGB748Q-ogClUhGH9l458bo1NA_ZoVL_ngCFuYx2RjNaDSG3nGWcM32_qF6rVSYY55nUuSxFfkYSXSpecKHyEjick-u_g5WXJInxnU0oCg0KrshH1be173y3pc3exOidxxDpZ_xWHrEd4oghXe2Mw0Dx4C12DdJxh3040rGnvh1Cf0AasO1HpBG7n6RvzRbjf2VjRt93N-TCmX3E5MQzsn5-Wlcv6fJtvqgelqnXbEzrXBvVCMSiBCecBFTKFlYAlyibupayFhrATr5yIHJURQMGgVlnmZAWZuTut9Yj4mYI0y_huDnNA1_Q0lwD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mejdoubi, M. ; Aboutajdine, D. ; Kerroum, M. A. ; Hammouch, A.</creator><creatorcontrib>Mejdoubi, M. ; Aboutajdine, D. ; Kerroum, M. A. ; Hammouch, A.</creatorcontrib><description>Classification system and textural features play increasingly an important role in remotely sensed images classification and many pattern recognition applications. In this work, we propose to fuse the information outputed by 3 well-known classifiers: Support Vector Machines (SVM), Neural Network (NN) and Parzen Window (PW). These classifiers were combined according to the Dempster-Shafer theory. The input textural feature used are selected according the GMMFS algorithm. The classification results show that the proposed method gives high performances than those of classifiers separately considered.</description><identifier>ISBN: 1612847307</identifier><identifier>ISBN: 9781612847306</identifier><identifier>EISBN: 9781612847313</identifier><identifier>EISBN: 1612847323</identifier><identifier>EISBN: 9781612847320</identifier><identifier>EISBN: 1612847315</identifier><identifier>DOI: 10.1109/ICMCS.2011.5945724</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Classifier Combination ; Dempster-Shafer Theory ; GMMFS algorithm ; Image color analysis ; Pattern recognition ; Pixel ; Remote sensing ; remote sensing images ; Support vector machines ; Textural Feature ; Training</subject><ispartof>2011 International Conference on Multimedia Computing and Systems, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5945724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5945724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mejdoubi, M.</creatorcontrib><creatorcontrib>Aboutajdine, D.</creatorcontrib><creatorcontrib>Kerroum, M. A.</creatorcontrib><creatorcontrib>Hammouch, A.</creatorcontrib><title>Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification</title><title>2011 International Conference on Multimedia Computing and Systems</title><addtitle>ICMCS</addtitle><description>Classification system and textural features play increasingly an important role in remotely sensed images classification and many pattern recognition applications. In this work, we propose to fuse the information outputed by 3 well-known classifiers: Support Vector Machines (SVM), Neural Network (NN) and Parzen Window (PW). These classifiers were combined according to the Dempster-Shafer theory. The input textural feature used are selected according the GMMFS algorithm. The classification results show that the proposed method gives high performances than those of classifiers separately considered.</description><subject>Artificial neural networks</subject><subject>Classifier Combination</subject><subject>Dempster-Shafer Theory</subject><subject>GMMFS algorithm</subject><subject>Image color analysis</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Support vector machines</subject><subject>Textural Feature</subject><subject>Training</subject><isbn>1612847307</isbn><isbn>9781612847306</isbn><isbn>9781612847313</isbn><isbn>1612847323</isbn><isbn>9781612847320</isbn><isbn>1612847315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtOwzAQNEJIQMkPwMU_kGB748Q-ogClUhGH9l458bo1NA_ZoVL_ngCFuYx2RjNaDSG3nGWcM32_qF6rVSYY55nUuSxFfkYSXSpecKHyEjick-u_g5WXJInxnU0oCg0KrshH1be173y3pc3exOidxxDpZ_xWHrEd4oghXe2Mw0Dx4C12DdJxh3040rGnvh1Cf0AasO1HpBG7n6RvzRbjf2VjRt93N-TCmX3E5MQzsn5-Wlcv6fJtvqgelqnXbEzrXBvVCMSiBCecBFTKFlYAlyibupayFhrATr5yIHJURQMGgVlnmZAWZuTut9Yj4mYI0y_huDnNA1_Q0lwD</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Mejdoubi, M.</creator><creator>Aboutajdine, D.</creator><creator>Kerroum, M. A.</creator><creator>Hammouch, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification</title><author>Mejdoubi, M. ; Aboutajdine, D. ; Kerroum, M. A. ; Hammouch, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b49a8c2ee673f2f53e88d6d2315e5cbb55b2933de678f324e86c3ae30dfd025d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Classifier Combination</topic><topic>Dempster-Shafer Theory</topic><topic>GMMFS algorithm</topic><topic>Image color analysis</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Support vector machines</topic><topic>Textural Feature</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Mejdoubi, M.</creatorcontrib><creatorcontrib>Aboutajdine, D.</creatorcontrib><creatorcontrib>Kerroum, M. A.</creatorcontrib><creatorcontrib>Hammouch, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mejdoubi, M.</au><au>Aboutajdine, D.</au><au>Kerroum, M. A.</au><au>Hammouch, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification</atitle><btitle>2011 International Conference on Multimedia Computing and Systems</btitle><stitle>ICMCS</stitle><date>2011-04</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1612847307</isbn><isbn>9781612847306</isbn><eisbn>9781612847313</eisbn><eisbn>1612847323</eisbn><eisbn>9781612847320</eisbn><eisbn>1612847315</eisbn><abstract>Classification system and textural features play increasingly an important role in remotely sensed images classification and many pattern recognition applications. In this work, we propose to fuse the information outputed by 3 well-known classifiers: Support Vector Machines (SVM), Neural Network (NN) and Parzen Window (PW). These classifiers were combined according to the Dempster-Shafer theory. The input textural feature used are selected according the GMMFS algorithm. The classification results show that the proposed method gives high performances than those of classifiers separately considered.</abstract><pub>IEEE</pub><doi>10.1109/ICMCS.2011.5945724</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612847307
ispartof 2011 International Conference on Multimedia Computing and Systems, 2011, p.1-4
issn
language eng
recordid cdi_ieee_primary_5945724
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Classifier Combination
Dempster-Shafer Theory
GMMFS algorithm
Image color analysis
Pattern recognition
Pixel
Remote sensing
remote sensing images
Support vector machines
Textural Feature
Training
title Combining classifiers using Dempster-Shafer evidence theory to improve remote sensing images classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combining%20classifiers%20using%20Dempster-Shafer%20evidence%20theory%20to%20improve%20remote%20sensing%20images%20classification&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Computing%20and%20Systems&rft.au=Mejdoubi,%20M.&rft.date=2011-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1612847307&rft.isbn_list=9781612847306&rft_id=info:doi/10.1109/ICMCS.2011.5945724&rft.eisbn=9781612847313&rft.eisbn_list=1612847323&rft.eisbn_list=9781612847320&rft.eisbn_list=1612847315&rft_dat=%3Cieee_6IE%3E5945724%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b49a8c2ee673f2f53e88d6d2315e5cbb55b2933de678f324e86c3ae30dfd025d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5945724&rfr_iscdi=true