Loading…

Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm

In this paper a Fuzzy Sliding Mode (FSM) control strategy is proposed and also Genetic Algorithms are employed to find the sliding parameters and membership functions of fuzzy part. Furthermore, due to conflicting between objective functions, means that as one objective function improves, another on...

Full description

Saved in:
Bibliographic Details
Main Authors: Rezapour, J., Sharifi, M., Nariman-Zadeh, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 459
container_issue
container_start_page 455
container_title
container_volume
creator Rezapour, J.
Sharifi, M.
Nariman-Zadeh, N.
description In this paper a Fuzzy Sliding Mode (FSM) control strategy is proposed and also Genetic Algorithms are employed to find the sliding parameters and membership functions of fuzzy part. Furthermore, due to conflicting between objective functions, means that as one objective function improves, another one deteriorates; there is a set of optimal solutions, well-known as Pareto optimal solutions. Therefore, Multi-objective Genetic Algorithms (MOGA) are used for Pareto approach optimization of fuzzy sliding mode control. The important conflicting objectives that have been considered in this work are, integrate tracking errors (ITE) and control inputs (CI). Moreover, this approach returns the optimum answers in Pareto form that designer can, by making trade-offs, select desired answer. Finally, simulation results of the close-loop system of two-degree-of-freedom rigid robot manipulator with the proposed controller show the effectiveness of the method.
doi_str_mv 10.1109/INISTA.2011.5946144
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5946144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5946144</ieee_id><sourcerecordid>5946144</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-29a2ca6947c14e29482794e3b4c723b3587e1ff1c7d16860152fbe4774bd88c3</originalsourceid><addsrcrecordid>eNpNkMtqwzAURFVKoSXNF2SjH3CqK8t6LEPowxDaRbIPsnydKMiWseVC8vV9ZdHZHAYOsxhCFsCWAMw8le_ldrdacgawLIyQIMQNmRulQQLXwnDQt_87mOKezMfxxL4jpck5eyDHVd8H72zysaOxoc10uZzpGHztuwNtY43UxS4NMdAU6RCrmLyjre18PwWb4kCn8decQvJZrE7okv9EesAOf0wbDnHw6dg-krvGhhHnV87I9uV5t37LNh-v5Xq1ybxhKePGcmelEcqBQG6E5soIzCvhFM-rvNAKoWnAqRqklgwK3lQolBJVrbXLZ2Txt-oRcd8PvrXDeX99J_8CPiBasg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rezapour, J. ; Sharifi, M. ; Nariman-Zadeh, N.</creator><creatorcontrib>Rezapour, J. ; Sharifi, M. ; Nariman-Zadeh, N.</creatorcontrib><description>In this paper a Fuzzy Sliding Mode (FSM) control strategy is proposed and also Genetic Algorithms are employed to find the sliding parameters and membership functions of fuzzy part. Furthermore, due to conflicting between objective functions, means that as one objective function improves, another one deteriorates; there is a set of optimal solutions, well-known as Pareto optimal solutions. Therefore, Multi-objective Genetic Algorithms (MOGA) are used for Pareto approach optimization of fuzzy sliding mode control. The important conflicting objectives that have been considered in this work are, integrate tracking errors (ITE) and control inputs (CI). Moreover, this approach returns the optimum answers in Pareto form that designer can, by making trade-offs, select desired answer. Finally, simulation results of the close-loop system of two-degree-of-freedom rigid robot manipulator with the proposed controller show the effectiveness of the method.</description><identifier>ISBN: 9781612849195</identifier><identifier>ISBN: 1612849199</identifier><identifier>EISBN: 9781612849218</identifier><identifier>EISBN: 1612849229</identifier><identifier>EISBN: 9781612849225</identifier><identifier>EISBN: 1612849210</identifier><identifier>DOI: 10.1109/INISTA.2011.5946144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fuzzy control ; Genetic algorithms ; Joints ; Manipulators ; Multi-Objective Genetic Algorithm ; Optimization ; Pareto ; Sliding mode control</subject><ispartof>2011 International Symposium on Innovations in Intelligent Systems and Applications, 2011, p.455-459</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5946144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5946144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rezapour, J.</creatorcontrib><creatorcontrib>Sharifi, M.</creatorcontrib><creatorcontrib>Nariman-Zadeh, N.</creatorcontrib><title>Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm</title><title>2011 International Symposium on Innovations in Intelligent Systems and Applications</title><addtitle>INISTA</addtitle><description>In this paper a Fuzzy Sliding Mode (FSM) control strategy is proposed and also Genetic Algorithms are employed to find the sliding parameters and membership functions of fuzzy part. Furthermore, due to conflicting between objective functions, means that as one objective function improves, another one deteriorates; there is a set of optimal solutions, well-known as Pareto optimal solutions. Therefore, Multi-objective Genetic Algorithms (MOGA) are used for Pareto approach optimization of fuzzy sliding mode control. The important conflicting objectives that have been considered in this work are, integrate tracking errors (ITE) and control inputs (CI). Moreover, this approach returns the optimum answers in Pareto form that designer can, by making trade-offs, select desired answer. Finally, simulation results of the close-loop system of two-degree-of-freedom rigid robot manipulator with the proposed controller show the effectiveness of the method.</description><subject>Fuzzy control</subject><subject>Genetic algorithms</subject><subject>Joints</subject><subject>Manipulators</subject><subject>Multi-Objective Genetic Algorithm</subject><subject>Optimization</subject><subject>Pareto</subject><subject>Sliding mode control</subject><isbn>9781612849195</isbn><isbn>1612849199</isbn><isbn>9781612849218</isbn><isbn>1612849229</isbn><isbn>9781612849225</isbn><isbn>1612849210</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkMtqwzAURFVKoSXNF2SjH3CqK8t6LEPowxDaRbIPsnydKMiWseVC8vV9ZdHZHAYOsxhCFsCWAMw8le_ldrdacgawLIyQIMQNmRulQQLXwnDQt_87mOKezMfxxL4jpck5eyDHVd8H72zysaOxoc10uZzpGHztuwNtY43UxS4NMdAU6RCrmLyjre18PwWb4kCn8decQvJZrE7okv9EesAOf0wbDnHw6dg-krvGhhHnV87I9uV5t37LNh-v5Xq1ybxhKePGcmelEcqBQG6E5soIzCvhFM-rvNAKoWnAqRqklgwK3lQolBJVrbXLZ2Txt-oRcd8PvrXDeX99J_8CPiBasg</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Rezapour, J.</creator><creator>Sharifi, M.</creator><creator>Nariman-Zadeh, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm</title><author>Rezapour, J. ; Sharifi, M. ; Nariman-Zadeh, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-29a2ca6947c14e29482794e3b4c723b3587e1ff1c7d16860152fbe4774bd88c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Fuzzy control</topic><topic>Genetic algorithms</topic><topic>Joints</topic><topic>Manipulators</topic><topic>Multi-Objective Genetic Algorithm</topic><topic>Optimization</topic><topic>Pareto</topic><topic>Sliding mode control</topic><toplevel>online_resources</toplevel><creatorcontrib>Rezapour, J.</creatorcontrib><creatorcontrib>Sharifi, M.</creatorcontrib><creatorcontrib>Nariman-Zadeh, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rezapour, J.</au><au>Sharifi, M.</au><au>Nariman-Zadeh, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm</atitle><btitle>2011 International Symposium on Innovations in Intelligent Systems and Applications</btitle><stitle>INISTA</stitle><date>2011-06</date><risdate>2011</risdate><spage>455</spage><epage>459</epage><pages>455-459</pages><isbn>9781612849195</isbn><isbn>1612849199</isbn><eisbn>9781612849218</eisbn><eisbn>1612849229</eisbn><eisbn>9781612849225</eisbn><eisbn>1612849210</eisbn><abstract>In this paper a Fuzzy Sliding Mode (FSM) control strategy is proposed and also Genetic Algorithms are employed to find the sliding parameters and membership functions of fuzzy part. Furthermore, due to conflicting between objective functions, means that as one objective function improves, another one deteriorates; there is a set of optimal solutions, well-known as Pareto optimal solutions. Therefore, Multi-objective Genetic Algorithms (MOGA) are used for Pareto approach optimization of fuzzy sliding mode control. The important conflicting objectives that have been considered in this work are, integrate tracking errors (ITE) and control inputs (CI). Moreover, this approach returns the optimum answers in Pareto form that designer can, by making trade-offs, select desired answer. Finally, simulation results of the close-loop system of two-degree-of-freedom rigid robot manipulator with the proposed controller show the effectiveness of the method.</abstract><pub>IEEE</pub><doi>10.1109/INISTA.2011.5946144</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612849195
ispartof 2011 International Symposium on Innovations in Intelligent Systems and Applications, 2011, p.455-459
issn
language eng
recordid cdi_ieee_primary_5946144
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fuzzy control
Genetic algorithms
Joints
Manipulators
Multi-Objective Genetic Algorithm
Optimization
Pareto
Sliding mode control
title Application of fuzzy sliding mode control to robotic manipulator using multi-objective genetic algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20fuzzy%20sliding%20mode%20control%20to%20robotic%20manipulator%20using%20multi-objective%20genetic%20algorithm&rft.btitle=2011%20International%20Symposium%20on%20Innovations%20in%20Intelligent%20Systems%20and%20Applications&rft.au=Rezapour,%20J.&rft.date=2011-06&rft.spage=455&rft.epage=459&rft.pages=455-459&rft.isbn=9781612849195&rft.isbn_list=1612849199&rft_id=info:doi/10.1109/INISTA.2011.5946144&rft.eisbn=9781612849218&rft.eisbn_list=1612849229&rft.eisbn_list=9781612849225&rft.eisbn_list=1612849210&rft_dat=%3Cieee_6IE%3E5946144%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-29a2ca6947c14e29482794e3b4c723b3587e1ff1c7d16860152fbe4774bd88c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5946144&rfr_iscdi=true