Loading…

Detection of Sleeping Cells in LTE Networks Using Diffusion Maps

In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator...

Full description

Saved in:
Bibliographic Details
Main Authors: Chernogorov, F., Turkka, J., Ristaniemi, T., Averbuch, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Chernogorov, F.
Turkka, J.
Ristaniemi, T.
Averbuch, A.
description In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.
doi_str_mv 10.1109/VETECS.2011.5956626
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5956626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5956626</ieee_id><sourcerecordid>5956626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUdUsK19gm7mBRL_uWd2ShovEHXR6LYkmX9kNCYhExHfXop1dTh8nA8OIRsGKWNgr16Lqsh3KQfGUmWV1lyfkLU1GZNcykwIBqdk-V94dkYWTClIOFf8gixjfAeQBgRfkOstztjOYejp4OmuQxxD_0Zz7LpIQ0_LqqBPOH8P00ekL_HAtsH7r3hYPNZjvCTnvu4iro-5ItVtUeX3Sfl895DflEmwMCeonfEWJEctnJPWtKLBhmthGuYyKa1AUF56rcA0rpYSrW-Ey9Co1tbMiRXZ_GkDIu7HKXzW08_-eF78Av9FS3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</creator><creatorcontrib>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</creatorcontrib><description>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</description><identifier>ISSN: 1550-2252</identifier><identifier>ISBN: 1424483328</identifier><identifier>ISBN: 9781424483327</identifier><identifier>EISBN: 9781424483310</identifier><identifier>EISBN: 1424483298</identifier><identifier>EISBN: 9781424483297</identifier><identifier>EISBN: 9781424483303</identifier><identifier>EISBN: 142448331X</identifier><identifier>EISBN: 1424483301</identifier><identifier>DOI: 10.1109/VETECS.2011.5956626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Delta modulation ; Density functional theory ; Hardware ; Matrix decomposition ; Mobile communication ; Mobile computing</subject><ispartof>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5956626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5956626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chernogorov, F.</creatorcontrib><creatorcontrib>Turkka, J.</creatorcontrib><creatorcontrib>Ristaniemi, T.</creatorcontrib><creatorcontrib>Averbuch, A.</creatorcontrib><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><title>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)</title><addtitle>VETECS</addtitle><description>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</description><subject>Data mining</subject><subject>Delta modulation</subject><subject>Density functional theory</subject><subject>Hardware</subject><subject>Matrix decomposition</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><issn>1550-2252</issn><isbn>1424483328</isbn><isbn>9781424483327</isbn><isbn>9781424483310</isbn><isbn>1424483298</isbn><isbn>9781424483297</isbn><isbn>9781424483303</isbn><isbn>142448331X</isbn><isbn>1424483301</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKw0AYhUdUsK19gm7mBRL_uWd2ShovEHXR6LYkmX9kNCYhExHfXop1dTh8nA8OIRsGKWNgr16Lqsh3KQfGUmWV1lyfkLU1GZNcykwIBqdk-V94dkYWTClIOFf8gixjfAeQBgRfkOstztjOYejp4OmuQxxD_0Zz7LpIQ0_LqqBPOH8P00ekL_HAtsH7r3hYPNZjvCTnvu4iro-5ItVtUeX3Sfl895DflEmwMCeonfEWJEctnJPWtKLBhmthGuYyKa1AUF56rcA0rpYSrW-Ey9Co1tbMiRXZ_GkDIu7HKXzW08_-eF78Av9FS3g</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Chernogorov, F.</creator><creator>Turkka, J.</creator><creator>Ristaniemi, T.</creator><creator>Averbuch, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><author>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data mining</topic><topic>Delta modulation</topic><topic>Density functional theory</topic><topic>Hardware</topic><topic>Matrix decomposition</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chernogorov, F.</creatorcontrib><creatorcontrib>Turkka, J.</creatorcontrib><creatorcontrib>Ristaniemi, T.</creatorcontrib><creatorcontrib>Averbuch, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chernogorov, F.</au><au>Turkka, J.</au><au>Ristaniemi, T.</au><au>Averbuch, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</atitle><btitle>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)</btitle><stitle>VETECS</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1550-2252</issn><isbn>1424483328</isbn><isbn>9781424483327</isbn><eisbn>9781424483310</eisbn><eisbn>1424483298</eisbn><eisbn>9781424483297</eisbn><eisbn>9781424483303</eisbn><eisbn>142448331X</eisbn><eisbn>1424483301</eisbn><abstract>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</abstract><pub>IEEE</pub><doi>10.1109/VETECS.2011.5956626</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-2252
ispartof 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011, p.1-5
issn 1550-2252
language eng
recordid cdi_ieee_primary_5956626
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Delta modulation
Density functional theory
Hardware
Matrix decomposition
Mobile communication
Mobile computing
title Detection of Sleeping Cells in LTE Networks Using Diffusion Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Sleeping%20Cells%20in%20LTE%20Networks%20Using%20Diffusion%20Maps&rft.btitle=2011%20IEEE%2073rd%20Vehicular%20Technology%20Conference%20(VTC%20Spring)&rft.au=Chernogorov,%20F.&rft.date=2011-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1550-2252&rft.isbn=1424483328&rft.isbn_list=9781424483327&rft_id=info:doi/10.1109/VETECS.2011.5956626&rft.eisbn=9781424483310&rft.eisbn_list=1424483298&rft.eisbn_list=9781424483297&rft.eisbn_list=9781424483303&rft.eisbn_list=142448331X&rft.eisbn_list=1424483301&rft_dat=%3Cieee_6IE%3E5956626%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5956626&rfr_iscdi=true