Loading…
Detection of Sleeping Cells in LTE Networks Using Diffusion Maps
In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chernogorov, F. Turkka, J. Ristaniemi, T. Averbuch, A. |
description | In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept. |
doi_str_mv | 10.1109/VETECS.2011.5956626 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5956626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5956626</ieee_id><sourcerecordid>5956626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUdUsK19gm7mBRL_uWd2ShovEHXR6LYkmX9kNCYhExHfXop1dTh8nA8OIRsGKWNgr16Lqsh3KQfGUmWV1lyfkLU1GZNcykwIBqdk-V94dkYWTClIOFf8gixjfAeQBgRfkOstztjOYejp4OmuQxxD_0Zz7LpIQ0_LqqBPOH8P00ekL_HAtsH7r3hYPNZjvCTnvu4iro-5ItVtUeX3Sfl895DflEmwMCeonfEWJEctnJPWtKLBhmthGuYyKa1AUF56rcA0rpYSrW-Ey9Co1tbMiRXZ_GkDIu7HKXzW08_-eF78Av9FS3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</creator><creatorcontrib>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</creatorcontrib><description>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</description><identifier>ISSN: 1550-2252</identifier><identifier>ISBN: 1424483328</identifier><identifier>ISBN: 9781424483327</identifier><identifier>EISBN: 9781424483310</identifier><identifier>EISBN: 1424483298</identifier><identifier>EISBN: 9781424483297</identifier><identifier>EISBN: 9781424483303</identifier><identifier>EISBN: 142448331X</identifier><identifier>EISBN: 1424483301</identifier><identifier>DOI: 10.1109/VETECS.2011.5956626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Delta modulation ; Density functional theory ; Hardware ; Matrix decomposition ; Mobile communication ; Mobile computing</subject><ispartof>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5956626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5956626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chernogorov, F.</creatorcontrib><creatorcontrib>Turkka, J.</creatorcontrib><creatorcontrib>Ristaniemi, T.</creatorcontrib><creatorcontrib>Averbuch, A.</creatorcontrib><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><title>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)</title><addtitle>VETECS</addtitle><description>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</description><subject>Data mining</subject><subject>Delta modulation</subject><subject>Density functional theory</subject><subject>Hardware</subject><subject>Matrix decomposition</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><issn>1550-2252</issn><isbn>1424483328</isbn><isbn>9781424483327</isbn><isbn>9781424483310</isbn><isbn>1424483298</isbn><isbn>9781424483297</isbn><isbn>9781424483303</isbn><isbn>142448331X</isbn><isbn>1424483301</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKw0AYhUdUsK19gm7mBRL_uWd2ShovEHXR6LYkmX9kNCYhExHfXop1dTh8nA8OIRsGKWNgr16Lqsh3KQfGUmWV1lyfkLU1GZNcykwIBqdk-V94dkYWTClIOFf8gixjfAeQBgRfkOstztjOYejp4OmuQxxD_0Zz7LpIQ0_LqqBPOH8P00ekL_HAtsH7r3hYPNZjvCTnvu4iro-5ItVtUeX3Sfl895DflEmwMCeonfEWJEctnJPWtKLBhmthGuYyKa1AUF56rcA0rpYSrW-Ey9Co1tbMiRXZ_GkDIu7HKXzW08_-eF78Av9FS3g</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Chernogorov, F.</creator><creator>Turkka, J.</creator><creator>Ristaniemi, T.</creator><creator>Averbuch, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</title><author>Chernogorov, F. ; Turkka, J. ; Ristaniemi, T. ; Averbuch, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data mining</topic><topic>Delta modulation</topic><topic>Density functional theory</topic><topic>Hardware</topic><topic>Matrix decomposition</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chernogorov, F.</creatorcontrib><creatorcontrib>Turkka, J.</creatorcontrib><creatorcontrib>Ristaniemi, T.</creatorcontrib><creatorcontrib>Averbuch, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chernogorov, F.</au><au>Turkka, J.</au><au>Ristaniemi, T.</au><au>Averbuch, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Sleeping Cells in LTE Networks Using Diffusion Maps</atitle><btitle>2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)</btitle><stitle>VETECS</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1550-2252</issn><isbn>1424483328</isbn><isbn>9781424483327</isbn><eisbn>9781424483310</eisbn><eisbn>1424483298</eisbn><eisbn>9781424483297</eisbn><eisbn>9781424483303</eisbn><eisbn>142448331X</eisbn><eisbn>1424483301</eisbn><abstract>In mobile networks emergence of failures is caused by various breakdowns of hardware and software elements. One of the serious failures in radio networks is a Sleeping Cell. In our work one of the possible root causes for appearance of this network failure is simulated in a dynamic network simulator. The main aim of the research is to detect the presence of a Sleeping Cell in the network and to define its location. For this purpose Diffusion Maps data mining technique is employed. The developed fault identification framework is using the performance characteristics of the network, collected during its regular operation, and for that reason it can be implemented in real Long Term Evolution (LTE) networks within the Self-Organizing Networks (SON) concept.</abstract><pub>IEEE</pub><doi>10.1109/VETECS.2011.5956626</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-2252 |
ispartof | 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011, p.1-5 |
issn | 1550-2252 |
language | eng |
recordid | cdi_ieee_primary_5956626 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Delta modulation Density functional theory Hardware Matrix decomposition Mobile communication Mobile computing |
title | Detection of Sleeping Cells in LTE Networks Using Diffusion Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Sleeping%20Cells%20in%20LTE%20Networks%20Using%20Diffusion%20Maps&rft.btitle=2011%20IEEE%2073rd%20Vehicular%20Technology%20Conference%20(VTC%20Spring)&rft.au=Chernogorov,%20F.&rft.date=2011-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1550-2252&rft.isbn=1424483328&rft.isbn_list=9781424483327&rft_id=info:doi/10.1109/VETECS.2011.5956626&rft.eisbn=9781424483310&rft.eisbn_list=1424483298&rft.eisbn_list=9781424483297&rft.eisbn_list=9781424483303&rft.eisbn_list=142448331X&rft.eisbn_list=1424483301&rft_dat=%3Cieee_6IE%3E5956626%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e6d7f9042e63dd497c3beb2637b1d84493e05f4f6507bda44e9fb3d8e75c9a1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5956626&rfr_iscdi=true |