Loading…

An Automatic Parameter Optimization Method on Performance Test of Storage Systems

In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters auto...

Full description

Saved in:
Bibliographic Details
Main Authors: TingTao Zhao, LiGu Zhu, Liang Zheng, QuanWei Qiu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 794
container_issue
container_start_page 792
container_title
container_volume
creator TingTao Zhao
LiGu Zhu
Liang Zheng
QuanWei Qiu
description In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.
doi_str_mv 10.1109/CSO.2011.69
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5957776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5957776</ieee_id><sourcerecordid>5957776</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3</originalsourceid><addsrcrecordid>eNotj01PhDAURWuMiTqycummf2Cw5dFXuiTEr2QMY2A_aeGhGKGTUhfjr5dEz-benMVNLmO3UqRSCnNfNXWaCSlTNGfsWmg0KgdQ5pwlRhcyz_LcaJnhJUuW5VOsIBaFgiv2Vs68_I5-snHs-N4GO1GkwOtjHKfxZ7V-5q8UP3zP17anMPgw2bkj3tISuR94E32w78Sb0xJpWm7YxWC_Fkr-c8Pax4e2et7u6qeXqtxtRyPiFtzQi65XfUeAiLp3DguBQnVZBgpt7lQGKwhO5AJQrYc6SQTKSQ3gYMPu_mZHIjocwzjZcDooo7TWCL_ngE5L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</creator><creatorcontrib>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</creatorcontrib><description>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</description><identifier>ISBN: 9781424497126</identifier><identifier>ISBN: 1424497124</identifier><identifier>EISBN: 0769543359</identifier><identifier>EISBN: 9780769543352</identifier><identifier>DOI: 10.1109/CSO.2011.69</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Bandwidth ; Benchmark testing ; Manuals ; Optimization ; Particle swarm optimization ; performance test ; storage bandwidth ; test ; test automation</subject><ispartof>2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, p.792-794</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5957776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5957776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>TingTao Zhao</creatorcontrib><creatorcontrib>LiGu Zhu</creatorcontrib><creatorcontrib>Liang Zheng</creatorcontrib><creatorcontrib>QuanWei Qiu</creatorcontrib><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><title>2011 Fourth International Joint Conference on Computational Sciences and Optimization</title><addtitle>cso</addtitle><description>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</description><subject>Aggregates</subject><subject>Bandwidth</subject><subject>Benchmark testing</subject><subject>Manuals</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>performance test</subject><subject>storage bandwidth</subject><subject>test</subject><subject>test automation</subject><isbn>9781424497126</isbn><isbn>1424497124</isbn><isbn>0769543359</isbn><isbn>9780769543352</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01PhDAURWuMiTqycummf2Cw5dFXuiTEr2QMY2A_aeGhGKGTUhfjr5dEz-benMVNLmO3UqRSCnNfNXWaCSlTNGfsWmg0KgdQ5pwlRhcyz_LcaJnhJUuW5VOsIBaFgiv2Vs68_I5-snHs-N4GO1GkwOtjHKfxZ7V-5q8UP3zP17anMPgw2bkj3tISuR94E32w78Sb0xJpWm7YxWC_Fkr-c8Pax4e2et7u6qeXqtxtRyPiFtzQi65XfUeAiLp3DguBQnVZBgpt7lQGKwhO5AJQrYc6SQTKSQ3gYMPu_mZHIjocwzjZcDooo7TWCL_ngE5L</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>TingTao Zhao</creator><creator>LiGu Zhu</creator><creator>Liang Zheng</creator><creator>QuanWei Qiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><author>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aggregates</topic><topic>Bandwidth</topic><topic>Benchmark testing</topic><topic>Manuals</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>performance test</topic><topic>storage bandwidth</topic><topic>test</topic><topic>test automation</topic><toplevel>online_resources</toplevel><creatorcontrib>TingTao Zhao</creatorcontrib><creatorcontrib>LiGu Zhu</creatorcontrib><creatorcontrib>Liang Zheng</creatorcontrib><creatorcontrib>QuanWei Qiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TingTao Zhao</au><au>LiGu Zhu</au><au>Liang Zheng</au><au>QuanWei Qiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</atitle><btitle>2011 Fourth International Joint Conference on Computational Sciences and Optimization</btitle><stitle>cso</stitle><date>2011-04</date><risdate>2011</risdate><spage>792</spage><epage>794</epage><pages>792-794</pages><isbn>9781424497126</isbn><isbn>1424497124</isbn><eisbn>0769543359</eisbn><eisbn>9780769543352</eisbn><abstract>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</abstract><pub>IEEE</pub><doi>10.1109/CSO.2011.69</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424497126
ispartof 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, p.792-794
issn
language eng
recordid cdi_ieee_primary_5957776
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Bandwidth
Benchmark testing
Manuals
Optimization
Particle swarm optimization
performance test
storage bandwidth
test
test automation
title An Automatic Parameter Optimization Method on Performance Test of Storage Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Automatic%20Parameter%20Optimization%20Method%20on%20Performance%20Test%20of%20Storage%20Systems&rft.btitle=2011%20Fourth%20International%20Joint%20Conference%20on%20Computational%20Sciences%20and%20Optimization&rft.au=TingTao%20Zhao&rft.date=2011-04&rft.spage=792&rft.epage=794&rft.pages=792-794&rft.isbn=9781424497126&rft.isbn_list=1424497124&rft_id=info:doi/10.1109/CSO.2011.69&rft.eisbn=0769543359&rft.eisbn_list=9780769543352&rft_dat=%3Cieee_6IE%3E5957776%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5957776&rfr_iscdi=true