Loading…
An Automatic Parameter Optimization Method on Performance Test of Storage Systems
In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters auto...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 794 |
container_issue | |
container_start_page | 792 |
container_title | |
container_volume | |
creator | TingTao Zhao LiGu Zhu Liang Zheng QuanWei Qiu |
description | In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test. |
doi_str_mv | 10.1109/CSO.2011.69 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5957776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5957776</ieee_id><sourcerecordid>5957776</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3</originalsourceid><addsrcrecordid>eNotj01PhDAURWuMiTqycummf2Cw5dFXuiTEr2QMY2A_aeGhGKGTUhfjr5dEz-benMVNLmO3UqRSCnNfNXWaCSlTNGfsWmg0KgdQ5pwlRhcyz_LcaJnhJUuW5VOsIBaFgiv2Vs68_I5-snHs-N4GO1GkwOtjHKfxZ7V-5q8UP3zP17anMPgw2bkj3tISuR94E32w78Sb0xJpWm7YxWC_Fkr-c8Pax4e2et7u6qeXqtxtRyPiFtzQi65XfUeAiLp3DguBQnVZBgpt7lQGKwhO5AJQrYc6SQTKSQ3gYMPu_mZHIjocwzjZcDooo7TWCL_ngE5L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</creator><creatorcontrib>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</creatorcontrib><description>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</description><identifier>ISBN: 9781424497126</identifier><identifier>ISBN: 1424497124</identifier><identifier>EISBN: 0769543359</identifier><identifier>EISBN: 9780769543352</identifier><identifier>DOI: 10.1109/CSO.2011.69</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Bandwidth ; Benchmark testing ; Manuals ; Optimization ; Particle swarm optimization ; performance test ; storage bandwidth ; test ; test automation</subject><ispartof>2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, p.792-794</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5957776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5957776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>TingTao Zhao</creatorcontrib><creatorcontrib>LiGu Zhu</creatorcontrib><creatorcontrib>Liang Zheng</creatorcontrib><creatorcontrib>QuanWei Qiu</creatorcontrib><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><title>2011 Fourth International Joint Conference on Computational Sciences and Optimization</title><addtitle>cso</addtitle><description>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</description><subject>Aggregates</subject><subject>Bandwidth</subject><subject>Benchmark testing</subject><subject>Manuals</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>performance test</subject><subject>storage bandwidth</subject><subject>test</subject><subject>test automation</subject><isbn>9781424497126</isbn><isbn>1424497124</isbn><isbn>0769543359</isbn><isbn>9780769543352</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01PhDAURWuMiTqycummf2Cw5dFXuiTEr2QMY2A_aeGhGKGTUhfjr5dEz-benMVNLmO3UqRSCnNfNXWaCSlTNGfsWmg0KgdQ5pwlRhcyz_LcaJnhJUuW5VOsIBaFgiv2Vs68_I5-snHs-N4GO1GkwOtjHKfxZ7V-5q8UP3zP17anMPgw2bkj3tISuR94E32w78Sb0xJpWm7YxWC_Fkr-c8Pax4e2et7u6qeXqtxtRyPiFtzQi65XfUeAiLp3DguBQnVZBgpt7lQGKwhO5AJQrYc6SQTKSQ3gYMPu_mZHIjocwzjZcDooo7TWCL_ngE5L</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>TingTao Zhao</creator><creator>LiGu Zhu</creator><creator>Liang Zheng</creator><creator>QuanWei Qiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</title><author>TingTao Zhao ; LiGu Zhu ; Liang Zheng ; QuanWei Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aggregates</topic><topic>Bandwidth</topic><topic>Benchmark testing</topic><topic>Manuals</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>performance test</topic><topic>storage bandwidth</topic><topic>test</topic><topic>test automation</topic><toplevel>online_resources</toplevel><creatorcontrib>TingTao Zhao</creatorcontrib><creatorcontrib>LiGu Zhu</creatorcontrib><creatorcontrib>Liang Zheng</creatorcontrib><creatorcontrib>QuanWei Qiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TingTao Zhao</au><au>LiGu Zhu</au><au>Liang Zheng</au><au>QuanWei Qiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Automatic Parameter Optimization Method on Performance Test of Storage Systems</atitle><btitle>2011 Fourth International Joint Conference on Computational Sciences and Optimization</btitle><stitle>cso</stitle><date>2011-04</date><risdate>2011</risdate><spage>792</spage><epage>794</epage><pages>792-794</pages><isbn>9781424497126</isbn><isbn>1424497124</isbn><eisbn>0769543359</eisbn><eisbn>9780769543352</eisbn><abstract>In order to acquire the peak performance of one storage system quickly and accurately, an automatic parameter optimization method is used in performance test. By introducing artificial intelligence into storage test, the algorithms such as particle swarm optimization help to optimize parameters automatically on performance test. Experimental results show that this method can significantly improve efficiency and accuracy of performance test, so saving cost. The method based on intelligent optimization algorithms can acquire the optimal performance value of storage systems more quickly, especially in the case of there are too many parameters in performance test.</abstract><pub>IEEE</pub><doi>10.1109/CSO.2011.69</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424497126 |
ispartof | 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, p.792-794 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5957776 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aggregates Bandwidth Benchmark testing Manuals Optimization Particle swarm optimization performance test storage bandwidth test test automation |
title | An Automatic Parameter Optimization Method on Performance Test of Storage Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Automatic%20Parameter%20Optimization%20Method%20on%20Performance%20Test%20of%20Storage%20Systems&rft.btitle=2011%20Fourth%20International%20Joint%20Conference%20on%20Computational%20Sciences%20and%20Optimization&rft.au=TingTao%20Zhao&rft.date=2011-04&rft.spage=792&rft.epage=794&rft.pages=792-794&rft.isbn=9781424497126&rft.isbn_list=1424497124&rft_id=info:doi/10.1109/CSO.2011.69&rft.eisbn=0769543359&rft.eisbn_list=9780769543352&rft_dat=%3Cieee_6IE%3E5957776%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3bfd0cd5dce36667dbb680605c22356a4b52333363b040365543c1ee35b1733b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5957776&rfr_iscdi=true |