Loading…
Near-Optimal and Explicit Bell Inequality Violations
Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matchi...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 166 |
container_issue | |
container_start_page | 157 |
container_title | |
container_volume | |
creator | Buhrman, H. Regev, O. Scarpa, G. de Wolf, R. |
description | Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players. |
doi_str_mv | 10.1109/CCC.2011.30 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5959805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5959805</ieee_id><sourcerecordid>5959805</sourcerecordid><originalsourceid>FETCH-LOGICAL-h246t-fe82c553c7ff062fc52a8e92bffab28de1fb770a7402ebc2f042c5e8da18b7373</originalsourceid><addsrcrecordid>eNotjj1PwzAURc2XRCiZGFnyBxzes_1ie4SoQKWKLsBaOYktLJk0JEGi_55IMN073HN1GLtBKBHB3tV1XQpALCWcsCvQlSWlEM0pywRp4kaBPGO51QYVaQ2oLZ2zbEElByR7yfJpis1SjRRkbMbUi3cj3w1z_HSpcH1XrH-GFNs4Fw8-pWLT-69vl-J8LN7jIbk5Hvrpml0Elyaf_-eKvT2uX-tnvt09ber7Lf8Qqpp58Ea0RLLVIUAlQkvCGW9FE4JrhOk8hmaRdFqB8E0rAqhl703n0DRaarlit3-_0Xu_H8bFcTzuyZI1QPIXgIVJIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Near-Optimal and Explicit Bell Inequality Violations</title><source>IEEE Xplore All Conference Series</source><creator>Buhrman, H. ; Regev, O. ; Scarpa, G. ; de Wolf, R.</creator><creatorcontrib>Buhrman, H. ; Regev, O. ; Scarpa, G. ; de Wolf, R.</creatorcontrib><description>Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players.</description><identifier>ISSN: 1093-0159</identifier><identifier>ISBN: 9781457701795</identifier><identifier>ISBN: 1457701790</identifier><identifier>EISSN: 2575-8403</identifier><identifier>EISBN: 0769544118</identifier><identifier>EISBN: 9780769544113</identifier><identifier>DOI: 10.1109/CCC.2011.30</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bell inequality ; communication complexity ; Computer science ; Correlation ; Games ; nonlocal games ; Protocols ; quantum computing ; Quantum entanglement ; Upper bound</subject><ispartof>2011 IEEE 26th Annual Conference on Computational Complexity, 2011, p.157-166</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5959805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5959805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buhrman, H.</creatorcontrib><creatorcontrib>Regev, O.</creatorcontrib><creatorcontrib>Scarpa, G.</creatorcontrib><creatorcontrib>de Wolf, R.</creatorcontrib><title>Near-Optimal and Explicit Bell Inequality Violations</title><title>2011 IEEE 26th Annual Conference on Computational Complexity</title><addtitle>ccc</addtitle><description>Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players.</description><subject>Bell inequality</subject><subject>communication complexity</subject><subject>Computer science</subject><subject>Correlation</subject><subject>Games</subject><subject>nonlocal games</subject><subject>Protocols</subject><subject>quantum computing</subject><subject>Quantum entanglement</subject><subject>Upper bound</subject><issn>1093-0159</issn><issn>2575-8403</issn><isbn>9781457701795</isbn><isbn>1457701790</isbn><isbn>0769544118</isbn><isbn>9780769544113</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjj1PwzAURc2XRCiZGFnyBxzes_1ie4SoQKWKLsBaOYktLJk0JEGi_55IMN073HN1GLtBKBHB3tV1XQpALCWcsCvQlSWlEM0pywRp4kaBPGO51QYVaQ2oLZ2zbEElByR7yfJpis1SjRRkbMbUi3cj3w1z_HSpcH1XrH-GFNs4Fw8-pWLT-69vl-J8LN7jIbk5Hvrpml0Elyaf_-eKvT2uX-tnvt09ber7Lf8Qqpp58Ea0RLLVIUAlQkvCGW9FE4JrhOk8hmaRdFqB8E0rAqhl703n0DRaarlit3-_0Xu_H8bFcTzuyZI1QPIXgIVJIw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Buhrman, H.</creator><creator>Regev, O.</creator><creator>Scarpa, G.</creator><creator>de Wolf, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Near-Optimal and Explicit Bell Inequality Violations</title><author>Buhrman, H. ; Regev, O. ; Scarpa, G. ; de Wolf, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h246t-fe82c553c7ff062fc52a8e92bffab28de1fb770a7402ebc2f042c5e8da18b7373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bell inequality</topic><topic>communication complexity</topic><topic>Computer science</topic><topic>Correlation</topic><topic>Games</topic><topic>nonlocal games</topic><topic>Protocols</topic><topic>quantum computing</topic><topic>Quantum entanglement</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Buhrman, H.</creatorcontrib><creatorcontrib>Regev, O.</creatorcontrib><creatorcontrib>Scarpa, G.</creatorcontrib><creatorcontrib>de Wolf, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buhrman, H.</au><au>Regev, O.</au><au>Scarpa, G.</au><au>de Wolf, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Near-Optimal and Explicit Bell Inequality Violations</atitle><btitle>2011 IEEE 26th Annual Conference on Computational Complexity</btitle><stitle>ccc</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>157</spage><epage>166</epage><pages>157-166</pages><issn>1093-0159</issn><eissn>2575-8403</eissn><isbn>9781457701795</isbn><isbn>1457701790</isbn><eisbn>0769544118</eisbn><eisbn>9780769544113</eisbn><abstract>Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players.</abstract><pub>IEEE</pub><doi>10.1109/CCC.2011.30</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1093-0159 |
ispartof | 2011 IEEE 26th Annual Conference on Computational Complexity, 2011, p.157-166 |
issn | 1093-0159 2575-8403 |
language | eng |
recordid | cdi_ieee_primary_5959805 |
source | IEEE Xplore All Conference Series |
subjects | Bell inequality communication complexity Computer science Correlation Games nonlocal games Protocols quantum computing Quantum entanglement Upper bound |
title | Near-Optimal and Explicit Bell Inequality Violations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Near-Optimal%20and%20Explicit%20Bell%20Inequality%20Violations&rft.btitle=2011%20IEEE%2026th%20Annual%20Conference%20on%20Computational%20Complexity&rft.au=Buhrman,%20H.&rft.date=2011-01-01&rft.spage=157&rft.epage=166&rft.pages=157-166&rft.issn=1093-0159&rft.eissn=2575-8403&rft.isbn=9781457701795&rft.isbn_list=1457701790&rft_id=info:doi/10.1109/CCC.2011.30&rft.eisbn=0769544118&rft.eisbn_list=9780769544113&rft_dat=%3Cieee_CHZPO%3E5959805%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h246t-fe82c553c7ff062fc52a8e92bffab28de1fb770a7402ebc2f042c5e8da18b7373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5959805&rfr_iscdi=true |