Loading…
Bayesian Multi-task Learning for Common Spatial Patterns
Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083 |
---|---|
cites | |
container_end_page | 64 |
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Hyohyeong Kang Seungjin Choi |
description | Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples. |
doi_str_mv | 10.1109/PRNI.2011.8 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5961254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5961254</ieee_id><sourcerecordid>5961254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</originalsourceid><addsrcrecordid>eNotj8tKAzEUQCMiqHVWLt3kB2bM6-ax1EFrYWyLj3W5k2YkOI8yiYv-vQVdncWBA4eQW84qzpm7376tV5VgnFf2jFwzox0o6Ryck8IZyxUYc5IcLkmRUmyZ0EYbUO6K2Ec8hhRxpK8_fY5lxvRNm4DzGMcv2k0zradhmEb6fsAcsadbzDnMY7ohFx32KRT_XJDP56eP-qVsNstV_dCUnkuRS9BBKi29ZIDaem68scJbJryEYLxiHVPat6BboRV6UGHvMGjYSwXSMCsX5O6vG0MIu8McB5yPO3Cai9PjL6eaRWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyohyeong Kang ; Seungjin Choi</creator><creatorcontrib>Hyohyeong Kang ; Seungjin Choi</creatorcontrib><description>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</description><identifier>ISBN: 9781457701115</identifier><identifier>ISBN: 1457701111</identifier><identifier>EISBN: 0769543995</identifier><identifier>EISBN: 9780769543994</identifier><identifier>DOI: 10.1109/PRNI.2011.8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian multi-task learning ; brain computer interface ; Brain models ; common spatial patterns ; Computational modeling ; Electroencephalography ; Probabilistic logic ; Training</subject><ispartof>2011 International Workshop on Pattern Recognition in NeuroImaging, 2011, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5961254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5961254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyohyeong Kang</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><title>2011 International Workshop on Pattern Recognition in NeuroImaging</title><addtitle>prni</addtitle><description>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</description><subject>Bayesian methods</subject><subject>Bayesian multi-task learning</subject><subject>brain computer interface</subject><subject>Brain models</subject><subject>common spatial patterns</subject><subject>Computational modeling</subject><subject>Electroencephalography</subject><subject>Probabilistic logic</subject><subject>Training</subject><isbn>9781457701115</isbn><isbn>1457701111</isbn><isbn>0769543995</isbn><isbn>9780769543994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQCMiqHVWLt3kB2bM6-ax1EFrYWyLj3W5k2YkOI8yiYv-vQVdncWBA4eQW84qzpm7376tV5VgnFf2jFwzox0o6Ryck8IZyxUYc5IcLkmRUmyZ0EYbUO6K2Ec8hhRxpK8_fY5lxvRNm4DzGMcv2k0zradhmEb6fsAcsadbzDnMY7ohFx32KRT_XJDP56eP-qVsNstV_dCUnkuRS9BBKi29ZIDaem68scJbJryEYLxiHVPat6BboRV6UGHvMGjYSwXSMCsX5O6vG0MIu8McB5yPO3Cai9PjL6eaRWg</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hyohyeong Kang</creator><creator>Seungjin Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><author>Hyohyeong Kang ; Seungjin Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Bayesian multi-task learning</topic><topic>brain computer interface</topic><topic>Brain models</topic><topic>common spatial patterns</topic><topic>Computational modeling</topic><topic>Electroencephalography</topic><topic>Probabilistic logic</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyohyeong Kang</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyohyeong Kang</au><au>Seungjin Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Multi-task Learning for Common Spatial Patterns</atitle><btitle>2011 International Workshop on Pattern Recognition in NeuroImaging</btitle><stitle>prni</stitle><date>2011-05</date><risdate>2011</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><isbn>9781457701115</isbn><isbn>1457701111</isbn><eisbn>0769543995</eisbn><eisbn>9780769543994</eisbn><abstract>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</abstract><pub>IEEE</pub><doi>10.1109/PRNI.2011.8</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457701115 |
ispartof | 2011 International Workshop on Pattern Recognition in NeuroImaging, 2011, p.61-64 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5961254 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Bayesian multi-task learning brain computer interface Brain models common spatial patterns Computational modeling Electroencephalography Probabilistic logic Training |
title | Bayesian Multi-task Learning for Common Spatial Patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Multi-task%20Learning%20for%20Common%20Spatial%20Patterns&rft.btitle=2011%20International%20Workshop%20on%20Pattern%20Recognition%20in%20NeuroImaging&rft.au=Hyohyeong%20Kang&rft.date=2011-05&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.isbn=9781457701115&rft.isbn_list=1457701111&rft_id=info:doi/10.1109/PRNI.2011.8&rft.eisbn=0769543995&rft.eisbn_list=9780769543994&rft_dat=%3Cieee_6IE%3E5961254%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5961254&rfr_iscdi=true |