Loading…

Bayesian Multi-task Learning for Common Spatial Patterns

Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter...

Full description

Saved in:
Bibliographic Details
Main Authors: Hyohyeong Kang, Seungjin Choi
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083
cites
container_end_page 64
container_issue
container_start_page 61
container_title
container_volume
creator Hyohyeong Kang
Seungjin Choi
description Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.
doi_str_mv 10.1109/PRNI.2011.8
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5961254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5961254</ieee_id><sourcerecordid>5961254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</originalsourceid><addsrcrecordid>eNotj8tKAzEUQCMiqHVWLt3kB2bM6-ax1EFrYWyLj3W5k2YkOI8yiYv-vQVdncWBA4eQW84qzpm7376tV5VgnFf2jFwzox0o6Ryck8IZyxUYc5IcLkmRUmyZ0EYbUO6K2Ec8hhRxpK8_fY5lxvRNm4DzGMcv2k0zradhmEb6fsAcsadbzDnMY7ohFx32KRT_XJDP56eP-qVsNstV_dCUnkuRS9BBKi29ZIDaem68scJbJryEYLxiHVPat6BboRV6UGHvMGjYSwXSMCsX5O6vG0MIu8McB5yPO3Cai9PjL6eaRWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyohyeong Kang ; Seungjin Choi</creator><creatorcontrib>Hyohyeong Kang ; Seungjin Choi</creatorcontrib><description>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</description><identifier>ISBN: 9781457701115</identifier><identifier>ISBN: 1457701111</identifier><identifier>EISBN: 0769543995</identifier><identifier>EISBN: 9780769543994</identifier><identifier>DOI: 10.1109/PRNI.2011.8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian multi-task learning ; brain computer interface ; Brain models ; common spatial patterns ; Computational modeling ; Electroencephalography ; Probabilistic logic ; Training</subject><ispartof>2011 International Workshop on Pattern Recognition in NeuroImaging, 2011, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5961254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5961254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyohyeong Kang</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><title>2011 International Workshop on Pattern Recognition in NeuroImaging</title><addtitle>prni</addtitle><description>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</description><subject>Bayesian methods</subject><subject>Bayesian multi-task learning</subject><subject>brain computer interface</subject><subject>Brain models</subject><subject>common spatial patterns</subject><subject>Computational modeling</subject><subject>Electroencephalography</subject><subject>Probabilistic logic</subject><subject>Training</subject><isbn>9781457701115</isbn><isbn>1457701111</isbn><isbn>0769543995</isbn><isbn>9780769543994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQCMiqHVWLt3kB2bM6-ax1EFrYWyLj3W5k2YkOI8yiYv-vQVdncWBA4eQW84qzpm7376tV5VgnFf2jFwzox0o6Ryck8IZyxUYc5IcLkmRUmyZ0EYbUO6K2Ec8hhRxpK8_fY5lxvRNm4DzGMcv2k0zradhmEb6fsAcsadbzDnMY7ohFx32KRT_XJDP56eP-qVsNstV_dCUnkuRS9BBKi29ZIDaem68scJbJryEYLxiHVPat6BboRV6UGHvMGjYSwXSMCsX5O6vG0MIu8McB5yPO3Cai9PjL6eaRWg</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hyohyeong Kang</creator><creator>Seungjin Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Bayesian Multi-task Learning for Common Spatial Patterns</title><author>Hyohyeong Kang ; Seungjin Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Bayesian multi-task learning</topic><topic>brain computer interface</topic><topic>Brain models</topic><topic>common spatial patterns</topic><topic>Computational modeling</topic><topic>Electroencephalography</topic><topic>Probabilistic logic</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyohyeong Kang</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyohyeong Kang</au><au>Seungjin Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Multi-task Learning for Common Spatial Patterns</atitle><btitle>2011 International Workshop on Pattern Recognition in NeuroImaging</btitle><stitle>prni</stitle><date>2011-05</date><risdate>2011</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><isbn>9781457701115</isbn><isbn>1457701111</isbn><eisbn>0769543995</eisbn><eisbn>9780769543994</eisbn><abstract>Common spatial pattern (CSP) is a widely-used feature extraction method for electroencephalogram (EEG)classification and corresponding probabilistic models were recently developed, adopting a linear generative model for each class. These models are trained on a subject-by-subject basis so that inter-subject information is neglected. Moreover when only a few training samples are available for each subject, the performance is degraded. In this paper we employ Bayesian multi-task learning so that subject-to-subject information is transferred in learning the model for a subject of interest. We present two probabilistic models where precision parameters of multivariate or matrix-variate Gaussian prior for the dictionary are shared across subjects. Numerical experiments on the BCI competition IV 2a dataset confirm that our methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.</abstract><pub>IEEE</pub><doi>10.1109/PRNI.2011.8</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457701115
ispartof 2011 International Workshop on Pattern Recognition in NeuroImaging, 2011, p.61-64
issn
language eng
recordid cdi_ieee_primary_5961254
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian multi-task learning
brain computer interface
Brain models
common spatial patterns
Computational modeling
Electroencephalography
Probabilistic logic
Training
title Bayesian Multi-task Learning for Common Spatial Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Multi-task%20Learning%20for%20Common%20Spatial%20Patterns&rft.btitle=2011%20International%20Workshop%20on%20Pattern%20Recognition%20in%20NeuroImaging&rft.au=Hyohyeong%20Kang&rft.date=2011-05&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.isbn=9781457701115&rft.isbn_list=1457701111&rft_id=info:doi/10.1109/PRNI.2011.8&rft.eisbn=0769543995&rft.eisbn_list=9780769543994&rft_dat=%3Cieee_6IE%3E5961254%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c132t-56e3463c305a68c17c782c802c35e7c40f046cb56b264ac54ed9ae65d34537083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5961254&rfr_iscdi=true