Loading…

Frequency domain feature-based face recognition technique for different poses and low-resolution conditions

Pose variations are known to give real challenges in face recognition system. In this paper we proposed a method to recognize non-frontal faces with high performance by relying only on single full frontal gallery faces. By utilizing only small regions of the face or patches, we compute the Fourier c...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahdi, S. O., Abu-Bakar, S. A. R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 326
container_issue
container_start_page 322
container_title
container_volume
creator Shahdi, S. O.
Abu-Bakar, S. A. R.
description Pose variations are known to give real challenges in face recognition system. In this paper we proposed a method to recognize non-frontal faces with high performance by relying only on single full frontal gallery faces. By utilizing only small regions of the face or patches, we compute the Fourier coefficients of these patches for each image and transform them into a single vector. Hence, instead of comparing and matching pixels values we use these vectors to form a linear relationship which is then used to estimate the frontal face vector and then compare it with the actual frontal feature vector. The results show an average performance accuracy of 90% across all pose.
doi_str_mv 10.1109/IST.2011.5962222
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5962222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5962222</ieee_id><sourcerecordid>5962222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-67cb4cb0a838eb25d02d93c7976fc4a5a4bc762161ffafebf539bbf39ebbc4343</originalsourceid><addsrcrecordid>eNpVkEtPAjEcxOsrkSB3Ey_9Aot97rZHQwRJSDzInfTxr1ahxXaJ4du7QS7OZQ6T3yQzCN1TMqWU6Mfl23rKCKVTqVs26AJNdKdoS5kSSkt2iUZMcdYIJtjVv0zIazSiUqqGKaJv0aTWTzKobTWjaoS-5gW-D5DcEfu8MzHhAKY_FGisqeBxMA5wAZffU-xjTrgH95HigOCQC_YxBCiQerzPFSo2yeNt_mkK1Lw9nACXkz-h9Q7dBLOtMDn7GK3nz-vZS7N6XSxnT6smatI3beescJYYxRVYJj1hXnPX6a4NThhphHVdy4aBIZgANkiurQ1cg7VOcMHH6OGvNgLAZl_izpTj5vwc_wUAVmCO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Frequency domain feature-based face recognition technique for different poses and low-resolution conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shahdi, S. O. ; Abu-Bakar, S. A. R.</creator><creatorcontrib>Shahdi, S. O. ; Abu-Bakar, S. A. R.</creatorcontrib><description>Pose variations are known to give real challenges in face recognition system. In this paper we proposed a method to recognize non-frontal faces with high performance by relying only on single full frontal gallery faces. By utilizing only small regions of the face or patches, we compute the Fourier coefficients of these patches for each image and transform them into a single vector. Hence, instead of comparing and matching pixels values we use these vectors to form a linear relationship which is then used to estimate the frontal face vector and then compare it with the actual frontal feature vector. The results show an average performance accuracy of 90% across all pose.</description><identifier>ISSN: 1558-2809</identifier><identifier>ISBN: 9781612848945</identifier><identifier>ISBN: 161284894X</identifier><identifier>EISSN: 2832-4242</identifier><identifier>EISBN: 9781612848952</identifier><identifier>EISBN: 9781612848969</identifier><identifier>EISBN: 1612848958</identifier><identifier>EISBN: 1612848966</identifier><identifier>DOI: 10.1109/IST.2011.5962222</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Face recognition ; Feature extraction ; frequency domain ; local regions (patches) ; mapping coefficient ; Training ; varying pose ; Vectors</subject><ispartof>2011 IEEE International Conference on Imaging Systems and Techniques, 2011, p.322-326</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5962222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5962222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shahdi, S. O.</creatorcontrib><creatorcontrib>Abu-Bakar, S. A. R.</creatorcontrib><title>Frequency domain feature-based face recognition technique for different poses and low-resolution conditions</title><title>2011 IEEE International Conference on Imaging Systems and Techniques</title><addtitle>IST</addtitle><description>Pose variations are known to give real challenges in face recognition system. In this paper we proposed a method to recognize non-frontal faces with high performance by relying only on single full frontal gallery faces. By utilizing only small regions of the face or patches, we compute the Fourier coefficients of these patches for each image and transform them into a single vector. Hence, instead of comparing and matching pixels values we use these vectors to form a linear relationship which is then used to estimate the frontal face vector and then compare it with the actual frontal feature vector. The results show an average performance accuracy of 90% across all pose.</description><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>frequency domain</subject><subject>local regions (patches)</subject><subject>mapping coefficient</subject><subject>Training</subject><subject>varying pose</subject><subject>Vectors</subject><issn>1558-2809</issn><issn>2832-4242</issn><isbn>9781612848945</isbn><isbn>161284894X</isbn><isbn>9781612848952</isbn><isbn>9781612848969</isbn><isbn>1612848958</isbn><isbn>1612848966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtPAjEcxOsrkSB3Ey_9Aot97rZHQwRJSDzInfTxr1ahxXaJ4du7QS7OZQ6T3yQzCN1TMqWU6Mfl23rKCKVTqVs26AJNdKdoS5kSSkt2iUZMcdYIJtjVv0zIazSiUqqGKaJv0aTWTzKobTWjaoS-5gW-D5DcEfu8MzHhAKY_FGisqeBxMA5wAZffU-xjTrgH95HigOCQC_YxBCiQerzPFSo2yeNt_mkK1Lw9nACXkz-h9Q7dBLOtMDn7GK3nz-vZS7N6XSxnT6smatI3beescJYYxRVYJj1hXnPX6a4NThhphHVdy4aBIZgANkiurQ1cg7VOcMHH6OGvNgLAZl_izpTj5vwc_wUAVmCO</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Shahdi, S. O.</creator><creator>Abu-Bakar, S. A. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Frequency domain feature-based face recognition technique for different poses and low-resolution conditions</title><author>Shahdi, S. O. ; Abu-Bakar, S. A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-67cb4cb0a838eb25d02d93c7976fc4a5a4bc762161ffafebf539bbf39ebbc4343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>frequency domain</topic><topic>local regions (patches)</topic><topic>mapping coefficient</topic><topic>Training</topic><topic>varying pose</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahdi, S. O.</creatorcontrib><creatorcontrib>Abu-Bakar, S. A. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shahdi, S. O.</au><au>Abu-Bakar, S. A. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frequency domain feature-based face recognition technique for different poses and low-resolution conditions</atitle><btitle>2011 IEEE International Conference on Imaging Systems and Techniques</btitle><stitle>IST</stitle><date>2011-05</date><risdate>2011</risdate><spage>322</spage><epage>326</epage><pages>322-326</pages><issn>1558-2809</issn><eissn>2832-4242</eissn><isbn>9781612848945</isbn><isbn>161284894X</isbn><eisbn>9781612848952</eisbn><eisbn>9781612848969</eisbn><eisbn>1612848958</eisbn><eisbn>1612848966</eisbn><abstract>Pose variations are known to give real challenges in face recognition system. In this paper we proposed a method to recognize non-frontal faces with high performance by relying only on single full frontal gallery faces. By utilizing only small regions of the face or patches, we compute the Fourier coefficients of these patches for each image and transform them into a single vector. Hence, instead of comparing and matching pixels values we use these vectors to form a linear relationship which is then used to estimate the frontal face vector and then compare it with the actual frontal feature vector. The results show an average performance accuracy of 90% across all pose.</abstract><pub>IEEE</pub><doi>10.1109/IST.2011.5962222</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-2809
ispartof 2011 IEEE International Conference on Imaging Systems and Techniques, 2011, p.322-326
issn 1558-2809
2832-4242
language eng
recordid cdi_ieee_primary_5962222
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face
Face recognition
Feature extraction
frequency domain
local regions (patches)
mapping coefficient
Training
varying pose
Vectors
title Frequency domain feature-based face recognition technique for different poses and low-resolution conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frequency%20domain%20feature-based%20face%20recognition%20technique%20for%20different%20poses%20and%20low-resolution%20conditions&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Imaging%20Systems%20and%20Techniques&rft.au=Shahdi,%20S.%20O.&rft.date=2011-05&rft.spage=322&rft.epage=326&rft.pages=322-326&rft.issn=1558-2809&rft.eissn=2832-4242&rft.isbn=9781612848945&rft.isbn_list=161284894X&rft_id=info:doi/10.1109/IST.2011.5962222&rft.eisbn=9781612848952&rft.eisbn_list=9781612848969&rft.eisbn_list=1612848958&rft.eisbn_list=1612848966&rft_dat=%3Cieee_6IE%3E5962222%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-67cb4cb0a838eb25d02d93c7976fc4a5a4bc762161ffafebf539bbf39ebbc4343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5962222&rfr_iscdi=true