Loading…
Cepstrum-based filter-bank design using discriminative feature extraction training at various levels
This paper investigates the realization of optimal filter bank-based cepstral parameters. The framework is the discriminative feature extraction method (DFE) which iteratively estimates the filter-bank parameters according to the errors that the system makes. Various parameters of the filter-bank, s...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the realization of optimal filter bank-based cepstral parameters. The framework is the discriminative feature extraction method (DFE) which iteratively estimates the filter-bank parameters according to the errors that the system makes. Various parameters of the filter-bank, such as center frequency, bandwidth, and gain are optimized using a string-level optimization and a frame-level optimization scheme. Application to vowel and noisy telephone speech recognition tasks shows that the DFE method realizes a more robust classifier by appropriate feature extraction. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.1997.596235 |