Loading…

Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation

This paper proposes a link adaptation method for IEEE 802.11n, which can foresightedly co-optimize the modulation and coding scheme (MCS) in the PHY layer and the frame size in the MAC layer. The link adaptation method employs Markov decision process (MDP) for modeling this crosslayer design. By sol...

Full description

Saved in:
Bibliographic Details
Main Author: Kaijie Zhou
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Kaijie Zhou
description This paper proposes a link adaptation method for IEEE 802.11n, which can foresightedly co-optimize the modulation and coding scheme (MCS) in the PHY layer and the frame size in the MAC layer. The link adaptation method employs Markov decision process (MDP) for modeling this crosslayer design. By solving the MDP model with a reinforcement learning which does not require a prior knowledge about the wireless environment, the foresighted transmission strategy can be computed. The simulation results verify the proposed method and show that our proposed method can improve the goodput by 25% at most, compared with the MCS-oriented link adaptation method.
doi_str_mv 10.1109/icc.2011.5963257
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5963257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5963257</ieee_id><sourcerecordid>5963257</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93d8b1a55f5783ed50c7a801a36529e589d1531c125fc61ffc3d0a3bf82663a53</originalsourceid><addsrcrecordid>eNo1kE1LAzEUReMX2NbuBTf5A1Pz8nyZZFnqqIUBoai4K2kmqVGbKZMR6b93QF1duAcuh8vYJYgZgDDX0bmZFAAzMgollUdsDAqkvpGIr8dsBAZ1AVrjCZuaUv8zSacDIxIFKlGes3HO70KQNAgj9rJqN1-554uuzbmo7cF3_NbnuE38O_ZvfOVjCm3n_M6nntfedimmLR8qvqyqimshB7nE65g--Lyx-972sU0X7CzYz-ynfzlhz3fV0-KhqB_vl4t5XUQoqS8MNnoDlihQqdE3JFxptQCLavDzpE0DhOBAUnAKQnDYCIuboKVSaAkn7Op3N3rv1_su7mx3WP_9gz88mVNV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaijie Zhou</creator><creatorcontrib>Kaijie Zhou</creatorcontrib><description>This paper proposes a link adaptation method for IEEE 802.11n, which can foresightedly co-optimize the modulation and coding scheme (MCS) in the PHY layer and the frame size in the MAC layer. The link adaptation method employs Markov decision process (MDP) for modeling this crosslayer design. By solving the MDP model with a reinforcement learning which does not require a prior knowledge about the wireless environment, the foresighted transmission strategy can be computed. The simulation results verify the proposed method and show that our proposed method can improve the goodput by 25% at most, compared with the MCS-oriented link adaptation method.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 9781612842325</identifier><identifier>ISBN: 1612842321</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 161284233X</identifier><identifier>EISBN: 9781612842318</identifier><identifier>EISBN: 9781612842332</identifier><identifier>EISBN: 1612842313</identifier><identifier>DOI: 10.1109/icc.2011.5963257</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; IEEE 802.11n Standard ; Learning ; Markov processes ; Signal to noise ratio ; Wireless communication</subject><ispartof>2011 IEEE International Conference on Communications (ICC), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5963257$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5963257$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaijie Zhou</creatorcontrib><title>Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation</title><title>2011 IEEE International Conference on Communications (ICC)</title><addtitle>icc</addtitle><description>This paper proposes a link adaptation method for IEEE 802.11n, which can foresightedly co-optimize the modulation and coding scheme (MCS) in the PHY layer and the frame size in the MAC layer. The link adaptation method employs Markov decision process (MDP) for modeling this crosslayer design. By solving the MDP model with a reinforcement learning which does not require a prior knowledge about the wireless environment, the foresighted transmission strategy can be computed. The simulation results verify the proposed method and show that our proposed method can improve the goodput by 25% at most, compared with the MCS-oriented link adaptation method.</description><subject>Adaptation models</subject><subject>IEEE 802.11n Standard</subject><subject>Learning</subject><subject>Markov processes</subject><subject>Signal to noise ratio</subject><subject>Wireless communication</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>9781612842325</isbn><isbn>1612842321</isbn><isbn>161284233X</isbn><isbn>9781612842318</isbn><isbn>9781612842332</isbn><isbn>1612842313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1LAzEUReMX2NbuBTf5A1Pz8nyZZFnqqIUBoai4K2kmqVGbKZMR6b93QF1duAcuh8vYJYgZgDDX0bmZFAAzMgollUdsDAqkvpGIr8dsBAZ1AVrjCZuaUv8zSacDIxIFKlGes3HO70KQNAgj9rJqN1-554uuzbmo7cF3_NbnuE38O_ZvfOVjCm3n_M6nntfedimmLR8qvqyqimshB7nE65g--Lyx-972sU0X7CzYz-ynfzlhz3fV0-KhqB_vl4t5XUQoqS8MNnoDlihQqdE3JFxptQCLavDzpE0DhOBAUnAKQnDYCIuboKVSaAkn7Op3N3rv1_su7mx3WP_9gz88mVNV</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Kaijie Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation</title><author>Kaijie Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93d8b1a55f5783ed50c7a801a36529e589d1531c125fc61ffc3d0a3bf82663a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>IEEE 802.11n Standard</topic><topic>Learning</topic><topic>Markov processes</topic><topic>Signal to noise ratio</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaijie Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaijie Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation</atitle><btitle>2011 IEEE International Conference on Communications (ICC)</btitle><stitle>icc</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>9781612842325</isbn><isbn>1612842321</isbn><eisbn>161284233X</eisbn><eisbn>9781612842318</eisbn><eisbn>9781612842332</eisbn><eisbn>1612842313</eisbn><abstract>This paper proposes a link adaptation method for IEEE 802.11n, which can foresightedly co-optimize the modulation and coding scheme (MCS) in the PHY layer and the frame size in the MAC layer. The link adaptation method employs Markov decision process (MDP) for modeling this crosslayer design. By solving the MDP model with a reinforcement learning which does not require a prior knowledge about the wireless environment, the foresighted transmission strategy can be computed. The simulation results verify the proposed method and show that our proposed method can improve the goodput by 25% at most, compared with the MCS-oriented link adaptation method.</abstract><pub>IEEE</pub><doi>10.1109/icc.2011.5963257</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof 2011 IEEE International Conference on Communications (ICC), 2011, p.1-5
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_5963257
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
IEEE 802.11n Standard
Learning
Markov processes
Signal to noise ratio
Wireless communication
title Robust Cross-Layer Design with Reinforcement Learning for IEEE 802.11n Link Adaptation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Cross-Layer%20Design%20with%20Reinforcement%20Learning%20for%20IEEE%20802.11n%20Link%20Adaptation&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Kaijie%20Zhou&rft.date=2011-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=9781612842325&rft.isbn_list=1612842321&rft_id=info:doi/10.1109/icc.2011.5963257&rft.eisbn=161284233X&rft.eisbn_list=9781612842318&rft.eisbn_list=9781612842332&rft.eisbn_list=1612842313&rft_dat=%3Cieee_6IE%3E5963257%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-93d8b1a55f5783ed50c7a801a36529e589d1531c125fc61ffc3d0a3bf82663a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5963257&rfr_iscdi=true