Loading…
Using machine learning for outcome prediction of patients with severe head injury
The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the se...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 204 |
container_issue | |
container_start_page | 200 |
container_title | |
container_volume | |
creator | Pilih, I.A. Mladenic, D. Lavrac, N. Prevec, T.S. |
description | The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction. |
doi_str_mv | 10.1109/CBMS.1997.596434 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_596434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>596434</ieee_id><sourcerecordid>596434</sourcerecordid><originalsourceid>FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523</originalsourceid><addsrcrecordid>eNotkE1LAzEUAAMqWGvv4il_YOtL3mazOeqiVaiIaM8lm7y4Kd0Pslul_16kngbmMIdh7EbAUggwd9XD68dSGKOXyhQ55mdsYXQJpSgLbWSpztlMQIGZFlJdsqtx3AFArgXO2PtmjN0Xb61rYkd8TzZ1fyL0ifeHyfUt8SGRj26Kfcf7wAc7Reqmkf_EqeEjfVMi3pD1PHa7Qzpes4tg9yMt_jlnm6fHz-o5W7-tXqr7dRYl5lNWOyjRWUVWUl0HEMp4Cg5JKKfRWwQNCCAC5Si9AyeKgEr6Go3SXkmcs9tTNxLRdkixtem4PQ3AX-MZUFA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using machine learning for outcome prediction of patients with severe head injury</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</creator><creatorcontrib>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</creatorcontrib><description>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780818679285</identifier><identifier>ISBN: 081867928X</identifier><identifier>DOI: 10.1109/CBMS.1997.596434</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain injuries ; Decision trees ; Hospitals ; Machine learning ; Magnetic heads ; Mathematical model ; Protocols ; Statistical analysis ; Surgery ; Tomography</subject><ispartof>Proceedings of Computer Based Medical Systems, 1997, p.200-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/596434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/596434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pilih, I.A.</creatorcontrib><creatorcontrib>Mladenic, D.</creatorcontrib><creatorcontrib>Lavrac, N.</creatorcontrib><creatorcontrib>Prevec, T.S.</creatorcontrib><title>Using machine learning for outcome prediction of patients with severe head injury</title><title>Proceedings of Computer Based Medical Systems</title><addtitle>CBMS</addtitle><description>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</description><subject>Brain injuries</subject><subject>Decision trees</subject><subject>Hospitals</subject><subject>Machine learning</subject><subject>Magnetic heads</subject><subject>Mathematical model</subject><subject>Protocols</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Tomography</subject><issn>1063-7125</issn><isbn>9780818679285</isbn><isbn>081867928X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LAzEUAAMqWGvv4il_YOtL3mazOeqiVaiIaM8lm7y4Kd0Pslul_16kngbmMIdh7EbAUggwd9XD68dSGKOXyhQ55mdsYXQJpSgLbWSpztlMQIGZFlJdsqtx3AFArgXO2PtmjN0Xb61rYkd8TzZ1fyL0ifeHyfUt8SGRj26Kfcf7wAc7Reqmkf_EqeEjfVMi3pD1PHa7Qzpes4tg9yMt_jlnm6fHz-o5W7-tXqr7dRYl5lNWOyjRWUVWUl0HEMp4Cg5JKKfRWwQNCCAC5Si9AyeKgEr6Go3SXkmcs9tTNxLRdkixtem4PQ3AX-MZUFA</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Pilih, I.A.</creator><creator>Mladenic, D.</creator><creator>Lavrac, N.</creator><creator>Prevec, T.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Using machine learning for outcome prediction of patients with severe head injury</title><author>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Brain injuries</topic><topic>Decision trees</topic><topic>Hospitals</topic><topic>Machine learning</topic><topic>Magnetic heads</topic><topic>Mathematical model</topic><topic>Protocols</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Pilih, I.A.</creatorcontrib><creatorcontrib>Mladenic, D.</creatorcontrib><creatorcontrib>Lavrac, N.</creatorcontrib><creatorcontrib>Prevec, T.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pilih, I.A.</au><au>Mladenic, D.</au><au>Lavrac, N.</au><au>Prevec, T.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using machine learning for outcome prediction of patients with severe head injury</atitle><btitle>Proceedings of Computer Based Medical Systems</btitle><stitle>CBMS</stitle><date>1997</date><risdate>1997</risdate><spage>200</spage><epage>204</epage><pages>200-204</pages><issn>1063-7125</issn><isbn>9780818679285</isbn><isbn>081867928X</isbn><abstract>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.1997.596434</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | Proceedings of Computer Based Medical Systems, 1997, p.200-204 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_596434 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Brain injuries Decision trees Hospitals Machine learning Magnetic heads Mathematical model Protocols Statistical analysis Surgery Tomography |
title | Using machine learning for outcome prediction of patients with severe head injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20machine%20learning%20for%20outcome%20prediction%20of%20patients%20with%20severe%20head%20injury&rft.btitle=Proceedings%20of%20Computer%20Based%20Medical%20Systems&rft.au=Pilih,%20I.A.&rft.date=1997&rft.spage=200&rft.epage=204&rft.pages=200-204&rft.issn=1063-7125&rft.isbn=9780818679285&rft.isbn_list=081867928X&rft_id=info:doi/10.1109/CBMS.1997.596434&rft_dat=%3Cieee_6IE%3E596434%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=596434&rfr_iscdi=true |