Loading…

Using machine learning for outcome prediction of patients with severe head injury

The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the se...

Full description

Saved in:
Bibliographic Details
Main Authors: Pilih, I.A., Mladenic, D., Lavrac, N., Prevec, T.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 204
container_issue
container_start_page 200
container_title
container_volume
creator Pilih, I.A.
Mladenic, D.
Lavrac, N.
Prevec, T.S.
description The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.
doi_str_mv 10.1109/CBMS.1997.596434
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_596434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>596434</ieee_id><sourcerecordid>596434</sourcerecordid><originalsourceid>FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523</originalsourceid><addsrcrecordid>eNotkE1LAzEUAAMqWGvv4il_YOtL3mazOeqiVaiIaM8lm7y4Kd0Pslul_16kngbmMIdh7EbAUggwd9XD68dSGKOXyhQ55mdsYXQJpSgLbWSpztlMQIGZFlJdsqtx3AFArgXO2PtmjN0Xb61rYkd8TzZ1fyL0ifeHyfUt8SGRj26Kfcf7wAc7Reqmkf_EqeEjfVMi3pD1PHa7Qzpes4tg9yMt_jlnm6fHz-o5W7-tXqr7dRYl5lNWOyjRWUVWUl0HEMp4Cg5JKKfRWwQNCCAC5Si9AyeKgEr6Go3SXkmcs9tTNxLRdkixtem4PQ3AX-MZUFA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using machine learning for outcome prediction of patients with severe head injury</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</creator><creatorcontrib>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</creatorcontrib><description>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780818679285</identifier><identifier>ISBN: 081867928X</identifier><identifier>DOI: 10.1109/CBMS.1997.596434</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain injuries ; Decision trees ; Hospitals ; Machine learning ; Magnetic heads ; Mathematical model ; Protocols ; Statistical analysis ; Surgery ; Tomography</subject><ispartof>Proceedings of Computer Based Medical Systems, 1997, p.200-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/596434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/596434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pilih, I.A.</creatorcontrib><creatorcontrib>Mladenic, D.</creatorcontrib><creatorcontrib>Lavrac, N.</creatorcontrib><creatorcontrib>Prevec, T.S.</creatorcontrib><title>Using machine learning for outcome prediction of patients with severe head injury</title><title>Proceedings of Computer Based Medical Systems</title><addtitle>CBMS</addtitle><description>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</description><subject>Brain injuries</subject><subject>Decision trees</subject><subject>Hospitals</subject><subject>Machine learning</subject><subject>Magnetic heads</subject><subject>Mathematical model</subject><subject>Protocols</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Tomography</subject><issn>1063-7125</issn><isbn>9780818679285</isbn><isbn>081867928X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LAzEUAAMqWGvv4il_YOtL3mazOeqiVaiIaM8lm7y4Kd0Pslul_16kngbmMIdh7EbAUggwd9XD68dSGKOXyhQ55mdsYXQJpSgLbWSpztlMQIGZFlJdsqtx3AFArgXO2PtmjN0Xb61rYkd8TzZ1fyL0ifeHyfUt8SGRj26Kfcf7wAc7Reqmkf_EqeEjfVMi3pD1PHa7Qzpes4tg9yMt_jlnm6fHz-o5W7-tXqr7dRYl5lNWOyjRWUVWUl0HEMp4Cg5JKKfRWwQNCCAC5Si9AyeKgEr6Go3SXkmcs9tTNxLRdkixtem4PQ3AX-MZUFA</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Pilih, I.A.</creator><creator>Mladenic, D.</creator><creator>Lavrac, N.</creator><creator>Prevec, T.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Using machine learning for outcome prediction of patients with severe head injury</title><author>Pilih, I.A. ; Mladenic, D. ; Lavrac, N. ; Prevec, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Brain injuries</topic><topic>Decision trees</topic><topic>Hospitals</topic><topic>Machine learning</topic><topic>Magnetic heads</topic><topic>Mathematical model</topic><topic>Protocols</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Pilih, I.A.</creatorcontrib><creatorcontrib>Mladenic, D.</creatorcontrib><creatorcontrib>Lavrac, N.</creatorcontrib><creatorcontrib>Prevec, T.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pilih, I.A.</au><au>Mladenic, D.</au><au>Lavrac, N.</au><au>Prevec, T.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using machine learning for outcome prediction of patients with severe head injury</atitle><btitle>Proceedings of Computer Based Medical Systems</btitle><stitle>CBMS</stitle><date>1997</date><risdate>1997</risdate><spage>200</spage><epage>204</epage><pages>200-204</pages><issn>1063-7125</issn><isbn>9780818679285</isbn><isbn>081867928X</isbn><abstract>The paper presents an application of decision tree induction to the problem of the prediction of outcome after a severe head injury. The study shows that induced decision trees are useful for the analysis of the importance of clinical parameters and of their combinations for the evaluation of the severity of brain injury and for outcome prediction.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.1997.596434</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof Proceedings of Computer Based Medical Systems, 1997, p.200-204
issn 1063-7125
language eng
recordid cdi_ieee_primary_596434
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain injuries
Decision trees
Hospitals
Machine learning
Magnetic heads
Mathematical model
Protocols
Statistical analysis
Surgery
Tomography
title Using machine learning for outcome prediction of patients with severe head injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20machine%20learning%20for%20outcome%20prediction%20of%20patients%20with%20severe%20head%20injury&rft.btitle=Proceedings%20of%20Computer%20Based%20Medical%20Systems&rft.au=Pilih,%20I.A.&rft.date=1997&rft.spage=200&rft.epage=204&rft.pages=200-204&rft.issn=1063-7125&rft.isbn=9780818679285&rft.isbn_list=081867928X&rft_id=info:doi/10.1109/CBMS.1997.596434&rft_dat=%3Cieee_6IE%3E596434%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i234t-bc083ca5ea2ebbf0159defc3e15c73da30703001fe432dc0c16f352db3957d523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=596434&rfr_iscdi=true