Loading…
Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation
Space alternating data augmentation (SADA) was proposed by Doucet et al (2005) as a MCMC generalization of the SAGE algorithm of Fessler and Hero (1994), itself a famous variant of the EM algorithm. While SADA had previously been applied to inference in Gaussian mixture models, we show this sampler...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 224 |
container_issue | |
container_start_page | 221 |
container_title | |
container_volume | |
creator | Fevotte, C. Cappe, O. Cemgil, A. T. |
description | Space alternating data augmentation (SADA) was proposed by Doucet et al (2005) as a MCMC generalization of the SAGE algorithm of Fessler and Hero (1994), itself a famous variant of the EM algorithm. While SADA had previously been applied to inference in Gaussian mixture models, we show this sampler to be particularly well suited for models having a composite structure, i.e., when the data may be written as a sum of latent components. The SADA sampler is shown to have favorable mixing properties and lesser storage requirement when compared to standard Gibbs sampling. We provide new alternative proofs of correctness of SADA and report results on sparse linear regression and nonnegative matrix factorization. |
doi_str_mv | 10.1109/SSP.2011.5967665 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5967665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967665</ieee_id><sourcerecordid>5967665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b516c03c5b46a7f097f202e57d9d06af2ef780b928b3fb723b1f1080279f77063</originalsourceid><addsrcrecordid>eNotkE1LAzEYhOMXWGvvgpf8ga1vkibZHKXUD2hRqJ5LdvdNG91Nlt2o-O8N2NMM88DADCE3DOaMgbnbbl_nHBibS6O0UvKEXLGF1BqkBn5KJlwZUQgp2RmZGV0emTKL88yEFgWUIC7JbBw_AICpkouST4hfOedrjyHRjR0-4zetD9YHuokhIV3aoY3UB4cDhhqzo3Xs-jj6DLvYYDvSH58OdOxtxrZNOASbfNjTxiZL7de-y9U5ieGaXDjbjjg76pS8P6zelk_F-uXxeXm_LjxnOhWVZKoGUctqoax2YLTjwFHqxjSgrOPodAmV4WUlXKW5qJhjeRvXxuXFSkzJ7X-vR8RdP_jODr-742viD7e3XPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fevotte, C. ; Cappe, O. ; Cemgil, A. T.</creator><creatorcontrib>Fevotte, C. ; Cappe, O. ; Cemgil, A. T.</creatorcontrib><description>Space alternating data augmentation (SADA) was proposed by Doucet et al (2005) as a MCMC generalization of the SAGE algorithm of Fessler and Hero (1994), itself a famous variant of the EM algorithm. While SADA had previously been applied to inference in Gaussian mixture models, we show this sampler to be particularly well suited for models having a composite structure, i.e., when the data may be written as a sum of latent components. The SADA sampler is shown to have favorable mixing properties and lesser storage requirement when compared to standard Gibbs sampling. We provide new alternative proofs of correctness of SADA and report results on sparse linear regression and nonnegative matrix factorization.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781457705694</identifier><identifier>ISBN: 1457705699</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1457705702</identifier><identifier>EISBN: 9781457705687</identifier><identifier>EISBN: 9781457705700</identifier><identifier>EISBN: 1457705680</identifier><identifier>DOI: 10.1109/SSP.2011.5967665</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convergence ; Data models ; Linear regression ; Markov chain Monte Carlo (MCMC) ; Markov processes ; Monte Carlo methods ; Noise ; non-negative matrix factorization (NMF) ; space alternating data augmentation (SADA) ; space alternating generalized expectation-maximization (SAGE) ; sparse linear regression</subject><ispartof>2011 IEEE Statistical Signal Processing Workshop (SSP), 2011, p.221-224</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5967665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fevotte, C.</creatorcontrib><creatorcontrib>Cappe, O.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><title>Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation</title><title>2011 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>Space alternating data augmentation (SADA) was proposed by Doucet et al (2005) as a MCMC generalization of the SAGE algorithm of Fessler and Hero (1994), itself a famous variant of the EM algorithm. While SADA had previously been applied to inference in Gaussian mixture models, we show this sampler to be particularly well suited for models having a composite structure, i.e., when the data may be written as a sum of latent components. The SADA sampler is shown to have favorable mixing properties and lesser storage requirement when compared to standard Gibbs sampling. We provide new alternative proofs of correctness of SADA and report results on sparse linear regression and nonnegative matrix factorization.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>Data models</subject><subject>Linear regression</subject><subject>Markov chain Monte Carlo (MCMC)</subject><subject>Markov processes</subject><subject>Monte Carlo methods</subject><subject>Noise</subject><subject>non-negative matrix factorization (NMF)</subject><subject>space alternating data augmentation (SADA)</subject><subject>space alternating generalized expectation-maximization (SAGE)</subject><subject>sparse linear regression</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781457705694</isbn><isbn>1457705699</isbn><isbn>1457705702</isbn><isbn>9781457705687</isbn><isbn>9781457705700</isbn><isbn>1457705680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LAzEYhOMXWGvvgpf8ga1vkibZHKXUD2hRqJ5LdvdNG91Nlt2o-O8N2NMM88DADCE3DOaMgbnbbl_nHBibS6O0UvKEXLGF1BqkBn5KJlwZUQgp2RmZGV0emTKL88yEFgWUIC7JbBw_AICpkouST4hfOedrjyHRjR0-4zetD9YHuokhIV3aoY3UB4cDhhqzo3Xs-jj6DLvYYDvSH58OdOxtxrZNOASbfNjTxiZL7de-y9U5ieGaXDjbjjg76pS8P6zelk_F-uXxeXm_LjxnOhWVZKoGUctqoax2YLTjwFHqxjSgrOPodAmV4WUlXKW5qJhjeRvXxuXFSkzJ7X-vR8RdP_jODr-742viD7e3XPQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Fevotte, C.</creator><creator>Cappe, O.</creator><creator>Cemgil, A. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110101</creationdate><title>Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation</title><author>Fevotte, C. ; Cappe, O. ; Cemgil, A. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b516c03c5b46a7f097f202e57d9d06af2ef780b928b3fb723b1f1080279f77063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>Data models</topic><topic>Linear regression</topic><topic>Markov chain Monte Carlo (MCMC)</topic><topic>Markov processes</topic><topic>Monte Carlo methods</topic><topic>Noise</topic><topic>non-negative matrix factorization (NMF)</topic><topic>space alternating data augmentation (SADA)</topic><topic>space alternating generalized expectation-maximization (SAGE)</topic><topic>sparse linear regression</topic><toplevel>online_resources</toplevel><creatorcontrib>Fevotte, C.</creatorcontrib><creatorcontrib>Cappe, O.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fevotte, C.</au><au>Cappe, O.</au><au>Cemgil, A. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation</atitle><btitle>2011 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781457705694</isbn><isbn>1457705699</isbn><eisbn>1457705702</eisbn><eisbn>9781457705687</eisbn><eisbn>9781457705700</eisbn><eisbn>1457705680</eisbn><abstract>Space alternating data augmentation (SADA) was proposed by Doucet et al (2005) as a MCMC generalization of the SAGE algorithm of Fessler and Hero (1994), itself a famous variant of the EM algorithm. While SADA had previously been applied to inference in Gaussian mixture models, we show this sampler to be particularly well suited for models having a composite structure, i.e., when the data may be written as a sum of latent components. The SADA sampler is shown to have favorable mixing properties and lesser storage requirement when compared to standard Gibbs sampling. We provide new alternative proofs of correctness of SADA and report results on sparse linear regression and nonnegative matrix factorization.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2011.5967665</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-0803 |
ispartof | 2011 IEEE Statistical Signal Processing Workshop (SSP), 2011, p.221-224 |
issn | 2373-0803 2693-3551 |
language | eng |
recordid | cdi_ieee_primary_5967665 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Convergence Data models Linear regression Markov chain Monte Carlo (MCMC) Markov processes Monte Carlo methods Noise non-negative matrix factorization (NMF) space alternating data augmentation (SADA) space alternating generalized expectation-maximization (SAGE) sparse linear regression |
title | Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20Markov%20chain%20Monte%20Carlo%20inference%20in%20composite%20models%20with%20space%20alternating%20data%20augmentation&rft.btitle=2011%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Fevotte,%20C.&rft.date=2011-01-01&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781457705694&rft.isbn_list=1457705699&rft_id=info:doi/10.1109/SSP.2011.5967665&rft.eisbn=1457705702&rft.eisbn_list=9781457705687&rft.eisbn_list=9781457705700&rft.eisbn_list=1457705680&rft_dat=%3Cieee_6IE%3E5967665%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i217t-b516c03c5b46a7f097f202e57d9d06af2ef780b928b3fb723b1f1080279f77063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5967665&rfr_iscdi=true |