Loading…
Wafer-Level Cu/Sn to Cu/Sn SLID-Bonded Interconnects With Increased Strength
Wafer level Cu-Sn solid liquid interdiffusion (SLID) bonding of interconnects was achieved by bonding two-layered Cu/Sn structures to each other. The bonded interconnects were investigated by mechanical, electrical and microscopic techniques. The Cu-Sn SLID interconnects were created by wafer-level...
Saved in:
Published in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2011-09, Vol.1 (9), p.1350-1358 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wafer level Cu-Sn solid liquid interdiffusion (SLID) bonding of interconnects was achieved by bonding two-layered Cu/Sn structures to each other. The bonded interconnects were investigated by mechanical, electrical and microscopic techniques. The Cu-Sn SLID interconnects were created by wafer-level bonding at 260°C. The bonded interconnects show shear strength of 45 MPa and a resistance of the order 100 mΩ . A major advantage of the Cu/Sn to Cu/Sn bonding scenario is to avoid the dynamic wetting of molten Sn to Cu, and simply replace with a liquid to liquid integration. Furthermore, the Sn overflow problem in a Cu/Sn SLID system was successfully addressed by designing a margin of 15 μm at the Cu pads to tolerate any Sn spreading. The uniformity requirement for electroplated Cu-Sn layers, which is crucial for achieving successful wafer-level bonding, is discussed. This wafer-level Cu-Sn SLID bonding process is a promising technique for 3-D assembly and packaging. |
---|---|
ISSN: | 2156-3950 2156-3985 |
DOI: | 10.1109/TCPMT.2011.2156793 |