Loading…

Noisy Channel Coding via Privacy Amplification and Information Reconciliation

We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2011-11, Vol.57 (11), p.7377-7385
Main Authors: Renes, J. M., Renner, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3
cites cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3
container_end_page 7385
container_issue 11
container_start_page 7377
container_title IEEE transactions on information theory
container_volume 57
creator Renes, J. M.
Renner, R.
description We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.
doi_str_mv 10.1109/TIT.2011.2162226
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5967913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967913</ieee_id><sourcerecordid>2517099771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoWKt3wcsiiKetee_mWBYfhfpA6jlks4mm7CY1aQv97926xYOHYfgx3wzDB8AlghOEoLhbzBYTDBGaYMQxxvwIjBBjRS44o8dgBCEqc0FpeQrOUlr2kTKER-D5Jbi0y6ov5b1psyo0zn9mW6eyt-i2Su-yabdqnXVarV3wmfJNNvM2xG7I70YHr13rfuM5OLGqTebi0Mfg4-F-UT3l89fHWTWd55pyts6buiENL0hTwAKhGtWY9WWUho0ytiwggUpQy4QRjOkaYk5hXdZaU2IppZqMwe1wdxXD98aktexc0qZtlTdhk6TgREBcctyT1__IZdhE3z8nBWSYMMxYD8EB0jGkFI2Vq-g6FXcSQbm3K3u7cm9XHuz2KzeHuypp1dqoegvpbw8zSiHle-5q4Jwx5m_MBC8EIuQH6RGCOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905235255</pqid></control><display><type>article</type><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><source>IEEE Xplore (Online service)</source><creator>Renes, J. M. ; Renner, R.</creator><creatorcontrib>Renes, J. M. ; Renner, R.</creatorcontrib><description>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2162226</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; Applied sciences ; Channel coding ; Channels ; Classical and quantum physics: mechanics and fields ; Coding ; Coding, codes ; Construction ; Data compression ; Decoding ; Electric noise ; Entropy ; Error probability ; Exact sciences and technology ; information reconciliation ; Information theory ; Information, signal and communications theory ; Markov processes ; Optimization ; Physics ; Privacy ; privacy amplification ; Protocol ; Quantum information ; Random variables ; Signal and communications theory ; Slepian-Wolf coding ; smooth entropies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2011-11, Vol.57 (11), p.7377-7385</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</citedby><cites>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25440466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Renes, J. M.</creatorcontrib><creatorcontrib>Renner, R.</creatorcontrib><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</description><subject>Amplification</subject><subject>Applied sciences</subject><subject>Channel coding</subject><subject>Channels</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Data compression</subject><subject>Decoding</subject><subject>Electric noise</subject><subject>Entropy</subject><subject>Error probability</subject><subject>Exact sciences and technology</subject><subject>information reconciliation</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Physics</subject><subject>Privacy</subject><subject>privacy amplification</subject><subject>Protocol</subject><subject>Quantum information</subject><subject>Random variables</subject><subject>Signal and communications theory</subject><subject>Slepian-Wolf coding</subject><subject>smooth entropies</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQh4MoWKt3wcsiiKetee_mWBYfhfpA6jlks4mm7CY1aQv97926xYOHYfgx3wzDB8AlghOEoLhbzBYTDBGaYMQxxvwIjBBjRS44o8dgBCEqc0FpeQrOUlr2kTKER-D5Jbi0y6ov5b1psyo0zn9mW6eyt-i2Su-yabdqnXVarV3wmfJNNvM2xG7I70YHr13rfuM5OLGqTebi0Mfg4-F-UT3l89fHWTWd55pyts6buiENL0hTwAKhGtWY9WWUho0ytiwggUpQy4QRjOkaYk5hXdZaU2IppZqMwe1wdxXD98aktexc0qZtlTdhk6TgREBcctyT1__IZdhE3z8nBWSYMMxYD8EB0jGkFI2Vq-g6FXcSQbm3K3u7cm9XHuz2KzeHuypp1dqoegvpbw8zSiHle-5q4Jwx5m_MBC8EIuQH6RGCOw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Renes, J. M.</creator><creator>Renner, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><author>Renes, J. M. ; Renner, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplification</topic><topic>Applied sciences</topic><topic>Channel coding</topic><topic>Channels</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Data compression</topic><topic>Decoding</topic><topic>Electric noise</topic><topic>Entropy</topic><topic>Error probability</topic><topic>Exact sciences and technology</topic><topic>information reconciliation</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Physics</topic><topic>Privacy</topic><topic>privacy amplification</topic><topic>Protocol</topic><topic>Quantum information</topic><topic>Random variables</topic><topic>Signal and communications theory</topic><topic>Slepian-Wolf coding</topic><topic>smooth entropies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renes, J. M.</creatorcontrib><creatorcontrib>Renner, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renes, J. M.</au><au>Renner, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>57</volume><issue>11</issue><spage>7377</spage><epage>7385</epage><pages>7377-7385</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2162226</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2011-11, Vol.57 (11), p.7377-7385
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_5967913
source IEEE Xplore (Online service)
subjects Amplification
Applied sciences
Channel coding
Channels
Classical and quantum physics: mechanics and fields
Coding
Coding, codes
Construction
Data compression
Decoding
Electric noise
Entropy
Error probability
Exact sciences and technology
information reconciliation
Information theory
Information, signal and communications theory
Markov processes
Optimization
Physics
Privacy
privacy amplification
Protocol
Quantum information
Random variables
Signal and communications theory
Slepian-Wolf coding
smooth entropies
Telecommunications and information theory
title Noisy Channel Coding via Privacy Amplification and Information Reconciliation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noisy%20Channel%20Coding%20via%20Privacy%20Amplification%20and%20Information%20Reconciliation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Renes,%20J.%20M.&rft.date=2011-11-01&rft.volume=57&rft.issue=11&rft.spage=7377&rft.epage=7385&rft.pages=7377-7385&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2162226&rft_dat=%3Cproquest_ieee_%3E2517099771%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905235255&rft_id=info:pmid/&rft_ieee_id=5967913&rfr_iscdi=true