Loading…
Noisy Channel Coding via Privacy Amplification and Information Reconciliation
We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression...
Saved in:
Published in: | IEEE transactions on information theory 2011-11, Vol.57 (11), p.7377-7385 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3 |
container_end_page | 7385 |
container_issue | 11 |
container_start_page | 7377 |
container_title | IEEE transactions on information theory |
container_volume | 57 |
creator | Renes, J. M. Renner, R. |
description | We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification. |
doi_str_mv | 10.1109/TIT.2011.2162226 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5967913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967913</ieee_id><sourcerecordid>2517099771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoWKt3wcsiiKetee_mWBYfhfpA6jlks4mm7CY1aQv97926xYOHYfgx3wzDB8AlghOEoLhbzBYTDBGaYMQxxvwIjBBjRS44o8dgBCEqc0FpeQrOUlr2kTKER-D5Jbi0y6ov5b1psyo0zn9mW6eyt-i2Su-yabdqnXVarV3wmfJNNvM2xG7I70YHr13rfuM5OLGqTebi0Mfg4-F-UT3l89fHWTWd55pyts6buiENL0hTwAKhGtWY9WWUho0ytiwggUpQy4QRjOkaYk5hXdZaU2IppZqMwe1wdxXD98aktexc0qZtlTdhk6TgREBcctyT1__IZdhE3z8nBWSYMMxYD8EB0jGkFI2Vq-g6FXcSQbm3K3u7cm9XHuz2KzeHuypp1dqoegvpbw8zSiHle-5q4Jwx5m_MBC8EIuQH6RGCOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905235255</pqid></control><display><type>article</type><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><source>IEEE Xplore (Online service)</source><creator>Renes, J. M. ; Renner, R.</creator><creatorcontrib>Renes, J. M. ; Renner, R.</creatorcontrib><description>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2162226</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; Applied sciences ; Channel coding ; Channels ; Classical and quantum physics: mechanics and fields ; Coding ; Coding, codes ; Construction ; Data compression ; Decoding ; Electric noise ; Entropy ; Error probability ; Exact sciences and technology ; information reconciliation ; Information theory ; Information, signal and communications theory ; Markov processes ; Optimization ; Physics ; Privacy ; privacy amplification ; Protocol ; Quantum information ; Random variables ; Signal and communications theory ; Slepian-Wolf coding ; smooth entropies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2011-11, Vol.57 (11), p.7377-7385</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</citedby><cites>FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25440466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Renes, J. M.</creatorcontrib><creatorcontrib>Renner, R.</creatorcontrib><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</description><subject>Amplification</subject><subject>Applied sciences</subject><subject>Channel coding</subject><subject>Channels</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Data compression</subject><subject>Decoding</subject><subject>Electric noise</subject><subject>Entropy</subject><subject>Error probability</subject><subject>Exact sciences and technology</subject><subject>information reconciliation</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Physics</subject><subject>Privacy</subject><subject>privacy amplification</subject><subject>Protocol</subject><subject>Quantum information</subject><subject>Random variables</subject><subject>Signal and communications theory</subject><subject>Slepian-Wolf coding</subject><subject>smooth entropies</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQh4MoWKt3wcsiiKetee_mWBYfhfpA6jlks4mm7CY1aQv97926xYOHYfgx3wzDB8AlghOEoLhbzBYTDBGaYMQxxvwIjBBjRS44o8dgBCEqc0FpeQrOUlr2kTKER-D5Jbi0y6ov5b1psyo0zn9mW6eyt-i2Su-yabdqnXVarV3wmfJNNvM2xG7I70YHr13rfuM5OLGqTebi0Mfg4-F-UT3l89fHWTWd55pyts6buiENL0hTwAKhGtWY9WWUho0ytiwggUpQy4QRjOkaYk5hXdZaU2IppZqMwe1wdxXD98aktexc0qZtlTdhk6TgREBcctyT1__IZdhE3z8nBWSYMMxYD8EB0jGkFI2Vq-g6FXcSQbm3K3u7cm9XHuz2KzeHuypp1dqoegvpbw8zSiHle-5q4Jwx5m_MBC8EIuQH6RGCOw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Renes, J. M.</creator><creator>Renner, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</title><author>Renes, J. M. ; Renner, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplification</topic><topic>Applied sciences</topic><topic>Channel coding</topic><topic>Channels</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Data compression</topic><topic>Decoding</topic><topic>Electric noise</topic><topic>Entropy</topic><topic>Error probability</topic><topic>Exact sciences and technology</topic><topic>information reconciliation</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Physics</topic><topic>Privacy</topic><topic>privacy amplification</topic><topic>Protocol</topic><topic>Quantum information</topic><topic>Random variables</topic><topic>Signal and communications theory</topic><topic>Slepian-Wolf coding</topic><topic>smooth entropies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renes, J. M.</creatorcontrib><creatorcontrib>Renner, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renes, J. M.</au><au>Renner, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noisy Channel Coding via Privacy Amplification and Information Reconciliation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>57</volume><issue>11</issue><spage>7377</spage><epage>7385</epage><pages>7377-7385</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2162226</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2011-11, Vol.57 (11), p.7377-7385 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_5967913 |
source | IEEE Xplore (Online service) |
subjects | Amplification Applied sciences Channel coding Channels Classical and quantum physics: mechanics and fields Coding Coding, codes Construction Data compression Decoding Electric noise Entropy Error probability Exact sciences and technology information reconciliation Information theory Information, signal and communications theory Markov processes Optimization Physics Privacy privacy amplification Protocol Quantum information Random variables Signal and communications theory Slepian-Wolf coding smooth entropies Telecommunications and information theory |
title | Noisy Channel Coding via Privacy Amplification and Information Reconciliation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noisy%20Channel%20Coding%20via%20Privacy%20Amplification%20and%20Information%20Reconciliation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Renes,%20J.%20M.&rft.date=2011-11-01&rft.volume=57&rft.issue=11&rft.spage=7377&rft.epage=7385&rft.pages=7377-7385&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2162226&rft_dat=%3Cproquest_ieee_%3E2517099771%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-dbd3d673d70711b1b251b2eac0daef87030a94f59e955cb02640b8bcc43f444c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905235255&rft_id=info:pmid/&rft_ieee_id=5967913&rfr_iscdi=true |