Loading…

LPV control active suspension system

The ℒ 2 gain control problem for disturbance attenuation in Linear Parameter Varying (LPV) Systems with saturating actuators has been addressed in this paper. The active suspension system which is used as a benchmark control problem is subjected to ℒ 2 disturbances and actuator saturation. Actuator...

Full description

Saved in:
Bibliographic Details
Main Authors: Ucun, L., Kucukdemiral, I. B., Delibasi, A., Cansever, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 121
container_issue
container_start_page 116
container_title
container_volume
creator Ucun, L.
Kucukdemiral, I. B.
Delibasi, A.
Cansever, G.
description The ℒ 2 gain control problem for disturbance attenuation in Linear Parameter Varying (LPV) Systems with saturating actuators has been addressed in this paper. The active suspension system which is used as a benchmark control problem is subjected to ℒ 2 disturbances and actuator saturation. Actuator saturation nonlinearity is reformalized in terms of some convex hull of linear feedback. This point of view allows us to construct ℒ 2 control problem having actuator saturation nonlinearities as a convex optimization problem. Nested ellipsoids have been used to measure the stability and disturbance rejection capabilities of the control system. At this point, the inner ellipsoid covers the initial conditions of states whereas the outer ellipsoid designates the ℒ 2 gain of the system. Finally, the proposed method has been applied to an active suspension system having linear time-varying parameter such as suspension spring constant. The results have been verified on a real experimental system. Experimental results demonstrate the efficiency of the proposed method.
doi_str_mv 10.1109/ICMECH.2011.5971267
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5971267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5971267</ieee_id><sourcerecordid>5971267</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4fc078fe370fe4b4a7e79b9e244f5be3f7c719a835853db2cab46efaa32be3a43</originalsourceid><addsrcrecordid>eNo1j09Lw0AUxJ-IoNZ8gl5y8Jq4_7K77yih2kJED8Vr2V3fwkqblGwU-u0N2A4Dw4-BgQFYclZzzvBp076t2nUtGOd1g4YLba7gnmsurMLZ11CgsRcWeAtFzt9sltaIgt3BY_fxWYahn8ZhX7owpV8q808-Up_T0Jf5lCc6PMBNdPtMxTkXsH1Zbdt11b2_btrnrkrIpkrFwIyNJA2LpLxyhgx6JKFUbDzJaILh6KxsbCO_vAjOK03ROSnm1im5gOX_bCKi3XFMBzeedudf8g9V_UGC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LPV control active suspension system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ucun, L. ; Kucukdemiral, I. B. ; Delibasi, A. ; Cansever, G.</creator><creatorcontrib>Ucun, L. ; Kucukdemiral, I. B. ; Delibasi, A. ; Cansever, G.</creatorcontrib><description>The ℒ 2 gain control problem for disturbance attenuation in Linear Parameter Varying (LPV) Systems with saturating actuators has been addressed in this paper. The active suspension system which is used as a benchmark control problem is subjected to ℒ 2 disturbances and actuator saturation. Actuator saturation nonlinearity is reformalized in terms of some convex hull of linear feedback. This point of view allows us to construct ℒ 2 control problem having actuator saturation nonlinearities as a convex optimization problem. Nested ellipsoids have been used to measure the stability and disturbance rejection capabilities of the control system. At this point, the inner ellipsoid covers the initial conditions of states whereas the outer ellipsoid designates the ℒ 2 gain of the system. Finally, the proposed method has been applied to an active suspension system having linear time-varying parameter such as suspension spring constant. The results have been verified on a real experimental system. Experimental results demonstrate the efficiency of the proposed method.</description><identifier>ISBN: 9781612849829</identifier><identifier>ISBN: 1612849822</identifier><identifier>EISBN: 1612849849</identifier><identifier>EISBN: 9781612849850</identifier><identifier>EISBN: 1612849857</identifier><identifier>EISBN: 9781612849843</identifier><identifier>DOI: 10.1109/ICMECH.2011.5971267</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active Suspension System ; Actuator Saturation Nonlinearity ; Actuators ; Ellipsoids ; Linear Matrix Inequalities ; LPV Control ; ℒ 2 gain control</subject><ispartof>2011 IEEE International Conference on Mechatronics, 2011, p.116-121</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5971267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5971267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ucun, L.</creatorcontrib><creatorcontrib>Kucukdemiral, I. B.</creatorcontrib><creatorcontrib>Delibasi, A.</creatorcontrib><creatorcontrib>Cansever, G.</creatorcontrib><title>LPV control active suspension system</title><title>2011 IEEE International Conference on Mechatronics</title><addtitle>ICMECH</addtitle><description>The ℒ 2 gain control problem for disturbance attenuation in Linear Parameter Varying (LPV) Systems with saturating actuators has been addressed in this paper. The active suspension system which is used as a benchmark control problem is subjected to ℒ 2 disturbances and actuator saturation. Actuator saturation nonlinearity is reformalized in terms of some convex hull of linear feedback. This point of view allows us to construct ℒ 2 control problem having actuator saturation nonlinearities as a convex optimization problem. Nested ellipsoids have been used to measure the stability and disturbance rejection capabilities of the control system. At this point, the inner ellipsoid covers the initial conditions of states whereas the outer ellipsoid designates the ℒ 2 gain of the system. Finally, the proposed method has been applied to an active suspension system having linear time-varying parameter such as suspension spring constant. The results have been verified on a real experimental system. Experimental results demonstrate the efficiency of the proposed method.</description><subject>Active Suspension System</subject><subject>Actuator Saturation Nonlinearity</subject><subject>Actuators</subject><subject>Ellipsoids</subject><subject>Linear Matrix Inequalities</subject><subject>LPV Control</subject><subject>ℒ 2 gain control</subject><isbn>9781612849829</isbn><isbn>1612849822</isbn><isbn>1612849849</isbn><isbn>9781612849850</isbn><isbn>1612849857</isbn><isbn>9781612849843</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j09Lw0AUxJ-IoNZ8gl5y8Jq4_7K77yih2kJED8Vr2V3fwkqblGwU-u0N2A4Dw4-BgQFYclZzzvBp076t2nUtGOd1g4YLba7gnmsurMLZ11CgsRcWeAtFzt9sltaIgt3BY_fxWYahn8ZhX7owpV8q808-Up_T0Jf5lCc6PMBNdPtMxTkXsH1Zbdt11b2_btrnrkrIpkrFwIyNJA2LpLxyhgx6JKFUbDzJaILh6KxsbCO_vAjOK03ROSnm1im5gOX_bCKi3XFMBzeedudf8g9V_UGC</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Ucun, L.</creator><creator>Kucukdemiral, I. B.</creator><creator>Delibasi, A.</creator><creator>Cansever, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>LPV control active suspension system</title><author>Ucun, L. ; Kucukdemiral, I. B. ; Delibasi, A. ; Cansever, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4fc078fe370fe4b4a7e79b9e244f5be3f7c719a835853db2cab46efaa32be3a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active Suspension System</topic><topic>Actuator Saturation Nonlinearity</topic><topic>Actuators</topic><topic>Ellipsoids</topic><topic>Linear Matrix Inequalities</topic><topic>LPV Control</topic><topic>ℒ 2 gain control</topic><toplevel>online_resources</toplevel><creatorcontrib>Ucun, L.</creatorcontrib><creatorcontrib>Kucukdemiral, I. B.</creatorcontrib><creatorcontrib>Delibasi, A.</creatorcontrib><creatorcontrib>Cansever, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ucun, L.</au><au>Kucukdemiral, I. B.</au><au>Delibasi, A.</au><au>Cansever, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LPV control active suspension system</atitle><btitle>2011 IEEE International Conference on Mechatronics</btitle><stitle>ICMECH</stitle><date>2011-04</date><risdate>2011</risdate><spage>116</spage><epage>121</epage><pages>116-121</pages><isbn>9781612849829</isbn><isbn>1612849822</isbn><eisbn>1612849849</eisbn><eisbn>9781612849850</eisbn><eisbn>1612849857</eisbn><eisbn>9781612849843</eisbn><abstract>The ℒ 2 gain control problem for disturbance attenuation in Linear Parameter Varying (LPV) Systems with saturating actuators has been addressed in this paper. The active suspension system which is used as a benchmark control problem is subjected to ℒ 2 disturbances and actuator saturation. Actuator saturation nonlinearity is reformalized in terms of some convex hull of linear feedback. This point of view allows us to construct ℒ 2 control problem having actuator saturation nonlinearities as a convex optimization problem. Nested ellipsoids have been used to measure the stability and disturbance rejection capabilities of the control system. At this point, the inner ellipsoid covers the initial conditions of states whereas the outer ellipsoid designates the ℒ 2 gain of the system. Finally, the proposed method has been applied to an active suspension system having linear time-varying parameter such as suspension spring constant. The results have been verified on a real experimental system. Experimental results demonstrate the efficiency of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICMECH.2011.5971267</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612849829
ispartof 2011 IEEE International Conference on Mechatronics, 2011, p.116-121
issn
language eng
recordid cdi_ieee_primary_5971267
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active Suspension System
Actuator Saturation Nonlinearity
Actuators
Ellipsoids
Linear Matrix Inequalities
LPV Control
ℒ 2 gain control
title LPV control active suspension system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LPV%20control%20active%20suspension%20system&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Mechatronics&rft.au=Ucun,%20L.&rft.date=2011-04&rft.spage=116&rft.epage=121&rft.pages=116-121&rft.isbn=9781612849829&rft.isbn_list=1612849822&rft_id=info:doi/10.1109/ICMECH.2011.5971267&rft.eisbn=1612849849&rft.eisbn_list=9781612849850&rft.eisbn_list=1612849857&rft.eisbn_list=9781612849843&rft_dat=%3Cieee_6IE%3E5971267%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4fc078fe370fe4b4a7e79b9e244f5be3f7c719a835853db2cab46efaa32be3a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5971267&rfr_iscdi=true