Loading…
A prediction method for gas emission based on RBF with grey correlation analysis
A rolling method of gas emission based on RBF neural networks is improved. In this method, a part of fixed-length data is selected for the prediction, new data are added continuously to the input sequence, and old data are removed, thereby developing the rolling prediction model. The diversified fac...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 154 |
container_issue | |
container_start_page | 151 |
container_title | |
container_volume | |
creator | Yumin Pan Hongmei Ma Quanzhu Zhang Pengqian Xue |
description | A rolling method of gas emission based on RBF neural networks is improved. In this method, a part of fixed-length data is selected for the prediction, new data are added continuously to the input sequence, and old data are removed, thereby developing the rolling prediction model. The diversified factors of gas emission analyzed have grey correlation. As a result, the model designed using this method can generalize well. The simulation results also show that the improved rolling prediction model applied in gas emission prediction has reliable accuracy and a good convergence rate. |
doi_str_mv | 10.1109/ICMIC.2011.5973692 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5973692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5973692</ieee_id><sourcerecordid>5973692</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-67bf32a45096e817867cce3931e9635691220e02259192469ee6e83e7bdd45b03</originalsourceid><addsrcrecordid>eNotj1FLwzAUheODoMz-gfmSP9B6kzRJ7-MsTgsTZex9pO3tFmnXkRSk_96pezqHw3cOHMaWAjIhAJ-q8r0qMwlCZBqtMihvWIK2ANTGCm2huGNJjF8AINAgaHXPPlf8HKj1zeTHEx9oOo4t78bADy5yGnyMv3ntIrX8YrbPa_7tpyM_BJp5M4ZAvfurupPr5-jjA7vtXB8pueqC7dYvu_It3Xy8VuVqk3qEKTW27pR0uQY0VAhbGNs0pFAJQqO0QSElEEipUaDMDRJdOEW2bttc16AW7PF_1hPR_hz84MK8v95WP3g0TME</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A prediction method for gas emission based on RBF with grey correlation analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yumin Pan ; Hongmei Ma ; Quanzhu Zhang ; Pengqian Xue</creator><creatorcontrib>Yumin Pan ; Hongmei Ma ; Quanzhu Zhang ; Pengqian Xue</creatorcontrib><description>A rolling method of gas emission based on RBF neural networks is improved. In this method, a part of fixed-length data is selected for the prediction, new data are added continuously to the input sequence, and old data are removed, thereby developing the rolling prediction model. The diversified factors of gas emission analyzed have grey correlation. As a result, the model designed using this method can generalize well. The simulation results also show that the improved rolling prediction model applied in gas emission prediction has reliable accuracy and a good convergence rate.</description><identifier>EISBN: 9780956715708</identifier><identifier>EISBN: 0956715702</identifier><identifier>DOI: 10.1109/ICMIC.2011.5973692</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Coal ; Data models ; Predictive models ; Training</subject><ispartof>Proceedings of 2011 International Conference on Modelling, Identification and Control, 2011, p.151-154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5973692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5973692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yumin Pan</creatorcontrib><creatorcontrib>Hongmei Ma</creatorcontrib><creatorcontrib>Quanzhu Zhang</creatorcontrib><creatorcontrib>Pengqian Xue</creatorcontrib><title>A prediction method for gas emission based on RBF with grey correlation analysis</title><title>Proceedings of 2011 International Conference on Modelling, Identification and Control</title><addtitle>ICMIC</addtitle><description>A rolling method of gas emission based on RBF neural networks is improved. In this method, a part of fixed-length data is selected for the prediction, new data are added continuously to the input sequence, and old data are removed, thereby developing the rolling prediction model. The diversified factors of gas emission analyzed have grey correlation. As a result, the model designed using this method can generalize well. The simulation results also show that the improved rolling prediction model applied in gas emission prediction has reliable accuracy and a good convergence rate.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Coal</subject><subject>Data models</subject><subject>Predictive models</subject><subject>Training</subject><isbn>9780956715708</isbn><isbn>0956715702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUheODoMz-gfmSP9B6kzRJ7-MsTgsTZex9pO3tFmnXkRSk_96pezqHw3cOHMaWAjIhAJ-q8r0qMwlCZBqtMihvWIK2ANTGCm2huGNJjF8AINAgaHXPPlf8HKj1zeTHEx9oOo4t78bADy5yGnyMv3ntIrX8YrbPa_7tpyM_BJp5M4ZAvfurupPr5-jjA7vtXB8pueqC7dYvu_It3Xy8VuVqk3qEKTW27pR0uQY0VAhbGNs0pFAJQqO0QSElEEipUaDMDRJdOEW2bttc16AW7PF_1hPR_hz84MK8v95WP3g0TME</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Yumin Pan</creator><creator>Hongmei Ma</creator><creator>Quanzhu Zhang</creator><creator>Pengqian Xue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>A prediction method for gas emission based on RBF with grey correlation analysis</title><author>Yumin Pan ; Hongmei Ma ; Quanzhu Zhang ; Pengqian Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-67bf32a45096e817867cce3931e9635691220e02259192469ee6e83e7bdd45b03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Coal</topic><topic>Data models</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yumin Pan</creatorcontrib><creatorcontrib>Hongmei Ma</creatorcontrib><creatorcontrib>Quanzhu Zhang</creatorcontrib><creatorcontrib>Pengqian Xue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yumin Pan</au><au>Hongmei Ma</au><au>Quanzhu Zhang</au><au>Pengqian Xue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A prediction method for gas emission based on RBF with grey correlation analysis</atitle><btitle>Proceedings of 2011 International Conference on Modelling, Identification and Control</btitle><stitle>ICMIC</stitle><date>2011-06</date><risdate>2011</risdate><spage>151</spage><epage>154</epage><pages>151-154</pages><eisbn>9780956715708</eisbn><eisbn>0956715702</eisbn><abstract>A rolling method of gas emission based on RBF neural networks is improved. In this method, a part of fixed-length data is selected for the prediction, new data are added continuously to the input sequence, and old data are removed, thereby developing the rolling prediction model. The diversified factors of gas emission analyzed have grey correlation. As a result, the model designed using this method can generalize well. The simulation results also show that the improved rolling prediction model applied in gas emission prediction has reliable accuracy and a good convergence rate.</abstract><pub>IEEE</pub><doi>10.1109/ICMIC.2011.5973692</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9780956715708 |
ispartof | Proceedings of 2011 International Conference on Modelling, Identification and Control, 2011, p.151-154 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5973692 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Artificial neural networks Coal Data models Predictive models Training |
title | A prediction method for gas emission based on RBF with grey correlation analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20prediction%20method%20for%20gas%20emission%20based%20on%20RBF%20with%20grey%20correlation%20analysis&rft.btitle=Proceedings%20of%202011%20International%20Conference%20on%20Modelling,%20Identification%20and%20Control&rft.au=Yumin%20Pan&rft.date=2011-06&rft.spage=151&rft.epage=154&rft.pages=151-154&rft_id=info:doi/10.1109/ICMIC.2011.5973692&rft.eisbn=9780956715708&rft.eisbn_list=0956715702&rft_dat=%3Cieee_6IE%3E5973692%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-67bf32a45096e817867cce3931e9635691220e02259192469ee6e83e7bdd45b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5973692&rfr_iscdi=true |