Loading…

A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes

A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturb...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhihong Man, Lee, K., Dianhui Wang, Zhenwei Cao, Chunyan Miao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2529
container_issue
container_start_page 2524
container_title
container_volume
creator Zhihong Man
Lee, K.
Dianhui Wang
Zhenwei Cao
Chunyan Miao
description A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.
doi_str_mv 10.1109/ICIEA.2011.5976017
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5976017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5976017</ieee_id><sourcerecordid>5976017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir5Adj4B1Ls6_eyqgpUKmIDWyonvm4NaYKcoKp_TwTdMJuzOJpZDCG3nM04Z-5-tVgt5zNgnM-UM5pxc0YKZyyXIKU1SvNzMgGubAngzMU_J83lr9MlCG6vSdH3H2yM1g5ATcj7nO67kGLCQJfrZ-qbbZfTsNvT2GXap3bbYLlLIWBLG3_ETCNiGN3B50Bb_M6-GTEcuvzZ08PYpE1q0WfadgH7G3IVfdNjceKUvD0sXxdP5frlcbWYr8vEjRpKJTUIZTzIygehaxYZEzKA1rbiInBdR1DRKiuUcpV0NWOBOaZCDUZ74cWU3P3tJkTcfOW09_m4Ob0lfgANZVkI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</creator><creatorcontrib>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</creatorcontrib><description>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424487547</identifier><identifier>ISBN: 1424487544</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424487561</identifier><identifier>EISBN: 1424487552</identifier><identifier>EISBN: 9781424487554</identifier><identifier>EISBN: 1424487560</identifier><identifier>DOI: 10.1109/ICIEA.2011.5976017</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological neural networks ; extreme learning machine ; Finite impulse response filter ; Machine learning ; neural networks ; pre-processor ; Robustness ; signal classification ; Signal to noise ratio ; Vectors</subject><ispartof>2011 6th IEEE Conference on Industrial Electronics and Applications, 2011, p.2524-2529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5976017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5976017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhihong Man</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><creatorcontrib>Zhenwei Cao</creatorcontrib><creatorcontrib>Chunyan Miao</creatorcontrib><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><title>2011 6th IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</description><subject>Algorithm design and analysis</subject><subject>Biological neural networks</subject><subject>extreme learning machine</subject><subject>Finite impulse response filter</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>pre-processor</subject><subject>Robustness</subject><subject>signal classification</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424487547</isbn><isbn>1424487544</isbn><isbn>9781424487561</isbn><isbn>1424487552</isbn><isbn>9781424487554</isbn><isbn>1424487560</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM1Loir5Adj4B1Ls6_eyqgpUKmIDWyonvm4NaYKcoKp_TwTdMJuzOJpZDCG3nM04Z-5-tVgt5zNgnM-UM5pxc0YKZyyXIKU1SvNzMgGubAngzMU_J83lr9MlCG6vSdH3H2yM1g5ATcj7nO67kGLCQJfrZ-qbbZfTsNvT2GXap3bbYLlLIWBLG3_ETCNiGN3B50Bb_M6-GTEcuvzZ08PYpE1q0WfadgH7G3IVfdNjceKUvD0sXxdP5frlcbWYr8vEjRpKJTUIZTzIygehaxYZEzKA1rbiInBdR1DRKiuUcpV0NWOBOaZCDUZ74cWU3P3tJkTcfOW09_m4Ob0lfgANZVkI</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Zhihong Man</creator><creator>Lee, K.</creator><creator>Dianhui Wang</creator><creator>Zhenwei Cao</creator><creator>Chunyan Miao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><author>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Biological neural networks</topic><topic>extreme learning machine</topic><topic>Finite impulse response filter</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>pre-processor</topic><topic>Robustness</topic><topic>signal classification</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhihong Man</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><creatorcontrib>Zhenwei Cao</creatorcontrib><creatorcontrib>Chunyan Miao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhihong Man</au><au>Lee, K.</au><au>Dianhui Wang</au><au>Zhenwei Cao</au><au>Chunyan Miao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</atitle><btitle>2011 6th IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2011-06</date><risdate>2011</risdate><spage>2524</spage><epage>2529</epage><pages>2524-2529</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424487547</isbn><isbn>1424487544</isbn><eisbn>9781424487561</eisbn><eisbn>1424487552</eisbn><eisbn>9781424487554</eisbn><eisbn>1424487560</eisbn><abstract>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2011.5976017</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-2318
ispartof 2011 6th IEEE Conference on Industrial Electronics and Applications, 2011, p.2524-2529
issn 2156-2318
2158-2297
language eng
recordid cdi_ieee_primary_5976017
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological neural networks
extreme learning machine
Finite impulse response filter
Machine learning
neural networks
pre-processor
Robustness
signal classification
Signal to noise ratio
Vectors
title A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20modified%20ELM%20algorithm%20for%20single-hidden%20layer%20feedforward%20neural%20networks%20with%20linear%20nodes&rft.btitle=2011%206th%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Zhihong%20Man&rft.date=2011-06&rft.spage=2524&rft.epage=2529&rft.pages=2524-2529&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424487547&rft.isbn_list=1424487544&rft_id=info:doi/10.1109/ICIEA.2011.5976017&rft.eisbn=9781424487561&rft.eisbn_list=1424487552&rft.eisbn_list=9781424487554&rft.eisbn_list=1424487560&rft_dat=%3Cieee_6IE%3E5976017%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5976017&rfr_iscdi=true