Loading…
A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes
A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturb...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2529 |
container_issue | |
container_start_page | 2524 |
container_title | |
container_volume | |
creator | Zhihong Man Lee, K. Dianhui Wang Zhenwei Cao Chunyan Miao |
description | A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme. |
doi_str_mv | 10.1109/ICIEA.2011.5976017 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5976017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5976017</ieee_id><sourcerecordid>5976017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir5Adj4B1Ls6_eyqgpUKmIDWyonvm4NaYKcoKp_TwTdMJuzOJpZDCG3nM04Z-5-tVgt5zNgnM-UM5pxc0YKZyyXIKU1SvNzMgGubAngzMU_J83lr9MlCG6vSdH3H2yM1g5ATcj7nO67kGLCQJfrZ-qbbZfTsNvT2GXap3bbYLlLIWBLG3_ETCNiGN3B50Bb_M6-GTEcuvzZ08PYpE1q0WfadgH7G3IVfdNjceKUvD0sXxdP5frlcbWYr8vEjRpKJTUIZTzIygehaxYZEzKA1rbiInBdR1DRKiuUcpV0NWOBOaZCDUZ74cWU3P3tJkTcfOW09_m4Ob0lfgANZVkI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</creator><creatorcontrib>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</creatorcontrib><description>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424487547</identifier><identifier>ISBN: 1424487544</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424487561</identifier><identifier>EISBN: 1424487552</identifier><identifier>EISBN: 9781424487554</identifier><identifier>EISBN: 1424487560</identifier><identifier>DOI: 10.1109/ICIEA.2011.5976017</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological neural networks ; extreme learning machine ; Finite impulse response filter ; Machine learning ; neural networks ; pre-processor ; Robustness ; signal classification ; Signal to noise ratio ; Vectors</subject><ispartof>2011 6th IEEE Conference on Industrial Electronics and Applications, 2011, p.2524-2529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5976017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5976017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhihong Man</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><creatorcontrib>Zhenwei Cao</creatorcontrib><creatorcontrib>Chunyan Miao</creatorcontrib><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><title>2011 6th IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</description><subject>Algorithm design and analysis</subject><subject>Biological neural networks</subject><subject>extreme learning machine</subject><subject>Finite impulse response filter</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>pre-processor</subject><subject>Robustness</subject><subject>signal classification</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424487547</isbn><isbn>1424487544</isbn><isbn>9781424487561</isbn><isbn>1424487552</isbn><isbn>9781424487554</isbn><isbn>1424487560</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM1Loir5Adj4B1Ls6_eyqgpUKmIDWyonvm4NaYKcoKp_TwTdMJuzOJpZDCG3nM04Z-5-tVgt5zNgnM-UM5pxc0YKZyyXIKU1SvNzMgGubAngzMU_J83lr9MlCG6vSdH3H2yM1g5ATcj7nO67kGLCQJfrZ-qbbZfTsNvT2GXap3bbYLlLIWBLG3_ETCNiGN3B50Bb_M6-GTEcuvzZ08PYpE1q0WfadgH7G3IVfdNjceKUvD0sXxdP5frlcbWYr8vEjRpKJTUIZTzIygehaxYZEzKA1rbiInBdR1DRKiuUcpV0NWOBOaZCDUZ74cWU3P3tJkTcfOW09_m4Ob0lfgANZVkI</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Zhihong Man</creator><creator>Lee, K.</creator><creator>Dianhui Wang</creator><creator>Zhenwei Cao</creator><creator>Chunyan Miao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</title><author>Zhihong Man ; Lee, K. ; Dianhui Wang ; Zhenwei Cao ; Chunyan Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Biological neural networks</topic><topic>extreme learning machine</topic><topic>Finite impulse response filter</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>pre-processor</topic><topic>Robustness</topic><topic>signal classification</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhihong Man</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><creatorcontrib>Zhenwei Cao</creatorcontrib><creatorcontrib>Chunyan Miao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhihong Man</au><au>Lee, K.</au><au>Dianhui Wang</au><au>Zhenwei Cao</au><au>Chunyan Miao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes</atitle><btitle>2011 6th IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2011-06</date><risdate>2011</risdate><spage>2524</spage><epage>2529</epage><pages>2524-2529</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424487547</isbn><isbn>1424487544</isbn><eisbn>9781424487561</eisbn><eisbn>1424487552</eisbn><eisbn>9781424487554</eisbn><eisbn>1424487560</eisbn><abstract>A modified ELM algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with linear nodes is discussed in this paper. It is seen that the input weights of the SLFN are designed such that the hidden layer performs as a preprocessor for removing the effects of the input disturbance and reducing both the structural and the empirical risks, the output weights are then trained to minimize the output error and further balance and reduce the structural and the empirical risks of the SLFN. The performance of an SLFN-based classifier trained with the proposed scheme is evaluated in the simulation section in support of the proposed scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2011.5976017</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-2318 |
ispartof | 2011 6th IEEE Conference on Industrial Electronics and Applications, 2011, p.2524-2529 |
issn | 2156-2318 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_5976017 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Biological neural networks extreme learning machine Finite impulse response filter Machine learning neural networks pre-processor Robustness signal classification Signal to noise ratio Vectors |
title | A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20modified%20ELM%20algorithm%20for%20single-hidden%20layer%20feedforward%20neural%20networks%20with%20linear%20nodes&rft.btitle=2011%206th%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Zhihong%20Man&rft.date=2011-06&rft.spage=2524&rft.epage=2529&rft.pages=2524-2529&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424487547&rft.isbn_list=1424487544&rft_id=info:doi/10.1109/ICIEA.2011.5976017&rft.eisbn=9781424487561&rft.eisbn_list=1424487552&rft.eisbn_list=9781424487554&rft.eisbn_list=1424487560&rft_dat=%3Cieee_6IE%3E5976017%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5462357a24bad36c0f0034d2668b13d16cf25f8583559b49c00d0905dc276a3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5976017&rfr_iscdi=true |