Loading…

Performance evaluation of local state estimation methods in bearings-only tracking problems

The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adaptive scaling parameter, which represent generic filters, and the shifted Rayleigh fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Straka, O., Dunik, J., Simandl, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Straka, O.
Dunik, J.
Simandl, M.
description The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adaptive scaling parameter, which represent generic filters, and the shifted Rayleigh filter, which is designed solely for the bearing-only tracking problem, is compared using the root mean square error, averaged normalized estimation error squared and non-credibility index. The simulations show that the unscented Kalman filter with adaptive scaling parameter achieves similar or even better performance than the shifted Rayleigh filter.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5977601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5977601</ieee_id><sourcerecordid>5977601</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-50254d23179c8a3ac4e5f584541195795f8f7c40ea377cae4e25d0cb8170326a3</originalsourceid><addsrcrecordid>eNotjs1KAzEUhSMiqLVP4CYvMJDJz9xkKcU_KNRFdy7KncyNRmcmJYlC396BejYfhw8O54LdCmel1soqe8nWDmyrDYCQHbhrti7lSyzpOic13LD3N8oh5QlnT5x-cfzBGtPMU-Bj8jjyUrEuptQ4nc1E9TMNhceZ94Q5zh-lSfN44jWj_14qP-bUjzSVO3YVcCy0_ueK7Z8e95uXZrt7ft08bJvoRG2MkEYPUrXgvEWFXpMJxmqj29YZcCbYAF4LQgXgkTRJMwjf2xaEkh2qFbs_z0YiOhzzcjSfDsYBdKJVf8GpTxU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance evaluation of local state estimation methods in bearings-only tracking problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Straka, O. ; Dunik, J. ; Simandl, M.</creator><creatorcontrib>Straka, O. ; Dunik, J. ; Simandl, M.</creatorcontrib><description>The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adaptive scaling parameter, which represent generic filters, and the shifted Rayleigh filter, which is designed solely for the bearing-only tracking problem, is compared using the root mean square error, averaged normalized estimation error squared and non-credibility index. The simulations show that the unscented Kalman filter with adaptive scaling parameter achieves similar or even better performance than the shifted Rayleigh filter.</description><identifier>ISBN: 9781457702679</identifier><identifier>ISBN: 1457702673</identifier><identifier>EISBN: 0982443838</identifier><identifier>EISBN: 9780982443828</identifier><identifier>EISBN: 098244382X</identifier><identifier>EISBN: 9780982443835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; bearings-only tracking ; Covariance matrix ; Kalman filters ; Measurement ; Noise ; nonlinear filtering ; State estimation</subject><ispartof>14th International Conference on Information Fusion, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5977601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5977601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Straka, O.</creatorcontrib><creatorcontrib>Dunik, J.</creatorcontrib><creatorcontrib>Simandl, M.</creatorcontrib><title>Performance evaluation of local state estimation methods in bearings-only tracking problems</title><title>14th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adaptive scaling parameter, which represent generic filters, and the shifted Rayleigh filter, which is designed solely for the bearing-only tracking problem, is compared using the root mean square error, averaged normalized estimation error squared and non-credibility index. The simulations show that the unscented Kalman filter with adaptive scaling parameter achieves similar or even better performance than the shifted Rayleigh filter.</description><subject>Approximation methods</subject><subject>bearings-only tracking</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Measurement</subject><subject>Noise</subject><subject>nonlinear filtering</subject><subject>State estimation</subject><isbn>9781457702679</isbn><isbn>1457702673</isbn><isbn>0982443838</isbn><isbn>9780982443828</isbn><isbn>098244382X</isbn><isbn>9780982443835</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KAzEUhSMiqLVP4CYvMJDJz9xkKcU_KNRFdy7KncyNRmcmJYlC396BejYfhw8O54LdCmel1soqe8nWDmyrDYCQHbhrti7lSyzpOic13LD3N8oh5QlnT5x-cfzBGtPMU-Bj8jjyUrEuptQ4nc1E9TMNhceZ94Q5zh-lSfN44jWj_14qP-bUjzSVO3YVcCy0_ueK7Z8e95uXZrt7ft08bJvoRG2MkEYPUrXgvEWFXpMJxmqj29YZcCbYAF4LQgXgkTRJMwjf2xaEkh2qFbs_z0YiOhzzcjSfDsYBdKJVf8GpTxU</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Straka, O.</creator><creator>Dunik, J.</creator><creator>Simandl, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Performance evaluation of local state estimation methods in bearings-only tracking problems</title><author>Straka, O. ; Dunik, J. ; Simandl, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-50254d23179c8a3ac4e5f584541195795f8f7c40ea377cae4e25d0cb8170326a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation methods</topic><topic>bearings-only tracking</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Measurement</topic><topic>Noise</topic><topic>nonlinear filtering</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Straka, O.</creatorcontrib><creatorcontrib>Dunik, J.</creatorcontrib><creatorcontrib>Simandl, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Straka, O.</au><au>Dunik, J.</au><au>Simandl, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of local state estimation methods in bearings-only tracking problems</atitle><btitle>14th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2011-07</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>9781457702679</isbn><isbn>1457702673</isbn><eisbn>0982443838</eisbn><eisbn>9780982443828</eisbn><eisbn>098244382X</eisbn><eisbn>9780982443835</eisbn><abstract>The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adaptive scaling parameter, which represent generic filters, and the shifted Rayleigh filter, which is designed solely for the bearing-only tracking problem, is compared using the root mean square error, averaged normalized estimation error squared and non-credibility index. The simulations show that the unscented Kalman filter with adaptive scaling parameter achieves similar or even better performance than the shifted Rayleigh filter.</abstract><pub>IEEE</pub><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457702679
ispartof 14th International Conference on Information Fusion, 2011, p.1-8
issn
language eng
recordid cdi_ieee_primary_5977601
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
bearings-only tracking
Covariance matrix
Kalman filters
Measurement
Noise
nonlinear filtering
State estimation
title Performance evaluation of local state estimation methods in bearings-only tracking problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20local%20state%20estimation%20methods%20in%20bearings-only%20tracking%20problems&rft.btitle=14th%20International%20Conference%20on%20Information%20Fusion&rft.au=Straka,%20O.&rft.date=2011-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=9781457702679&rft.isbn_list=1457702673&rft_id=info:doi/&rft.eisbn=0982443838&rft.eisbn_list=9780982443828&rft.eisbn_list=098244382X&rft.eisbn_list=9780982443835&rft_dat=%3Cieee_6IE%3E5977601%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-50254d23179c8a3ac4e5f584541195795f8f7c40ea377cae4e25d0cb8170326a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5977601&rfr_iscdi=true