Loading…
Path planning based on Genetic Algorithms and the Monte-Carlo method to avoid aerial vehicle collisions under uncertainties
This paper presents a collision-free path planning method for an aerial vehicle sharing airspace with other aerial vehicles. It is based on grid models and genetic algorithms to find safe trajectories. Monte-Carlo method is used to evaluate the best predicted trajectories considering different sourc...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a collision-free path planning method for an aerial vehicle sharing airspace with other aerial vehicles. It is based on grid models and genetic algorithms to find safe trajectories. Monte-Carlo method is used to evaluate the best predicted trajectories considering different sources of uncertainty such as the wind, the inaccuracies in the vehicle model and limitations of on-board sensors and control system. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ICRA.2011.5980246 |