Loading…
Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems
Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Raghavendra, B. S. Bera, D. Bopardikar, A. S. Narayanan, R. |
description | Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients. |
doi_str_mv | 10.1109/WoWMoM.2011.5986196 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5986196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5986196</ieee_id><sourcerecordid>5986196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73</originalsourceid><addsrcrecordid>eNpVkL1qwzAUhVVKoSX1E2TRC9jVjyVLYzFpWkjoEshSCNf2Va0S20FSKX77pjRLzvJxvuEMh5AlZwXnzD7tp_122haCcV4oazS3-oZktjK8VFXFpOLq9qoLcU-yGL_YObpijJcP5KOG0HloKYTQz6kfPNAOE7bJTyP9jn78pN08wuBbmvyA9AfC6U9Ojq7qNW0QUqR-pJj3CMfUtxCQxjkmHOIjuXNwjJhduCC7l9Wufs037-u3-nmTe8tSrmVnDZTCOtcoyVWnjbaAIJQ7a4Om1KJBjdC4lkkLVpSGAygnJSrbVXJBlv-zHhEPp-AHCPPhcon8BXbbVkU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</creator><creatorcontrib>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</creatorcontrib><description>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</description><identifier>ISBN: 9781457703522</identifier><identifier>ISBN: 1457703521</identifier><identifier>EISBN: 9781457703515</identifier><identifier>EISBN: 1457703513</identifier><identifier>EISBN: 1457703505</identifier><identifier>EISBN: 9781457703508</identifier><identifier>DOI: 10.1109/WoWMoM.2011.5986196</identifier><language>eng</language><publisher>IEEE</publisher><subject>cardiac arrhythmia detection ; Classification algorithms ; dynamic time warping ; Electrocardiogram ; Electrocardiography ; Mobile communication ; Morphology ; Real time systems ; smart-phone ; Training ; wearable system</subject><ispartof>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5986196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5986196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Bera, D.</creatorcontrib><creatorcontrib>Bopardikar, A. S.</creatorcontrib><creatorcontrib>Narayanan, R.</creatorcontrib><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><title>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks</title><addtitle>WoWMoM</addtitle><description>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</description><subject>cardiac arrhythmia detection</subject><subject>Classification algorithms</subject><subject>dynamic time warping</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Mobile communication</subject><subject>Morphology</subject><subject>Real time systems</subject><subject>smart-phone</subject><subject>Training</subject><subject>wearable system</subject><isbn>9781457703522</isbn><isbn>1457703521</isbn><isbn>9781457703515</isbn><isbn>1457703513</isbn><isbn>1457703505</isbn><isbn>9781457703508</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkL1qwzAUhVVKoSX1E2TRC9jVjyVLYzFpWkjoEshSCNf2Va0S20FSKX77pjRLzvJxvuEMh5AlZwXnzD7tp_122haCcV4oazS3-oZktjK8VFXFpOLq9qoLcU-yGL_YObpijJcP5KOG0HloKYTQz6kfPNAOE7bJTyP9jn78pN08wuBbmvyA9AfC6U9Ojq7qNW0QUqR-pJj3CMfUtxCQxjkmHOIjuXNwjJhduCC7l9Wufs037-u3-nmTe8tSrmVnDZTCOtcoyVWnjbaAIJQ7a4Om1KJBjdC4lkkLVpSGAygnJSrbVXJBlv-zHhEPp-AHCPPhcon8BXbbVkU</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Raghavendra, B. S.</creator><creator>Bera, D.</creator><creator>Bopardikar, A. S.</creator><creator>Narayanan, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><author>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>cardiac arrhythmia detection</topic><topic>Classification algorithms</topic><topic>dynamic time warping</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Mobile communication</topic><topic>Morphology</topic><topic>Real time systems</topic><topic>smart-phone</topic><topic>Training</topic><topic>wearable system</topic><toplevel>online_resources</toplevel><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Bera, D.</creatorcontrib><creatorcontrib>Bopardikar, A. S.</creatorcontrib><creatorcontrib>Narayanan, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raghavendra, B. S.</au><au>Bera, D.</au><au>Bopardikar, A. S.</au><au>Narayanan, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</atitle><btitle>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks</btitle><stitle>WoWMoM</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781457703522</isbn><isbn>1457703521</isbn><eisbn>9781457703515</eisbn><eisbn>1457703513</eisbn><eisbn>1457703505</eisbn><eisbn>9781457703508</eisbn><abstract>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</abstract><pub>IEEE</pub><doi>10.1109/WoWMoM.2011.5986196</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457703522 |
ispartof | 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2011, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5986196 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | cardiac arrhythmia detection Classification algorithms dynamic time warping Electrocardiogram Electrocardiography Mobile communication Morphology Real time systems smart-phone Training wearable system |
title | Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cardiac%20arrhythmia%20detection%20using%20dynamic%20time%20warping%20of%20ECG%20beats%20in%20e-healthcare%20systems&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20a%20World%20of%20Wireless,%20Mobile%20and%20Multimedia%20Networks&rft.au=Raghavendra,%20B.%20S.&rft.date=2011-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781457703522&rft.isbn_list=1457703521&rft_id=info:doi/10.1109/WoWMoM.2011.5986196&rft.eisbn=9781457703515&rft.eisbn_list=1457703513&rft.eisbn_list=1457703505&rft.eisbn_list=9781457703508&rft_dat=%3Cieee_6IE%3E5986196%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5986196&rfr_iscdi=true |