Loading…

Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems

Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim...

Full description

Saved in:
Bibliographic Details
Main Authors: Raghavendra, B. S., Bera, D., Bopardikar, A. S., Narayanan, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Raghavendra, B. S.
Bera, D.
Bopardikar, A. S.
Narayanan, R.
description Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.
doi_str_mv 10.1109/WoWMoM.2011.5986196
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5986196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5986196</ieee_id><sourcerecordid>5986196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73</originalsourceid><addsrcrecordid>eNpVkL1qwzAUhVVKoSX1E2TRC9jVjyVLYzFpWkjoEshSCNf2Va0S20FSKX77pjRLzvJxvuEMh5AlZwXnzD7tp_122haCcV4oazS3-oZktjK8VFXFpOLq9qoLcU-yGL_YObpijJcP5KOG0HloKYTQz6kfPNAOE7bJTyP9jn78pN08wuBbmvyA9AfC6U9Ojq7qNW0QUqR-pJj3CMfUtxCQxjkmHOIjuXNwjJhduCC7l9Wufs037-u3-nmTe8tSrmVnDZTCOtcoyVWnjbaAIJQ7a4Om1KJBjdC4lkkLVpSGAygnJSrbVXJBlv-zHhEPp-AHCPPhcon8BXbbVkU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</creator><creatorcontrib>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</creatorcontrib><description>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</description><identifier>ISBN: 9781457703522</identifier><identifier>ISBN: 1457703521</identifier><identifier>EISBN: 9781457703515</identifier><identifier>EISBN: 1457703513</identifier><identifier>EISBN: 1457703505</identifier><identifier>EISBN: 9781457703508</identifier><identifier>DOI: 10.1109/WoWMoM.2011.5986196</identifier><language>eng</language><publisher>IEEE</publisher><subject>cardiac arrhythmia detection ; Classification algorithms ; dynamic time warping ; Electrocardiogram ; Electrocardiography ; Mobile communication ; Morphology ; Real time systems ; smart-phone ; Training ; wearable system</subject><ispartof>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5986196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5986196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Bera, D.</creatorcontrib><creatorcontrib>Bopardikar, A. S.</creatorcontrib><creatorcontrib>Narayanan, R.</creatorcontrib><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><title>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks</title><addtitle>WoWMoM</addtitle><description>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</description><subject>cardiac arrhythmia detection</subject><subject>Classification algorithms</subject><subject>dynamic time warping</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Mobile communication</subject><subject>Morphology</subject><subject>Real time systems</subject><subject>smart-phone</subject><subject>Training</subject><subject>wearable system</subject><isbn>9781457703522</isbn><isbn>1457703521</isbn><isbn>9781457703515</isbn><isbn>1457703513</isbn><isbn>1457703505</isbn><isbn>9781457703508</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkL1qwzAUhVVKoSX1E2TRC9jVjyVLYzFpWkjoEshSCNf2Va0S20FSKX77pjRLzvJxvuEMh5AlZwXnzD7tp_122haCcV4oazS3-oZktjK8VFXFpOLq9qoLcU-yGL_YObpijJcP5KOG0HloKYTQz6kfPNAOE7bJTyP9jn78pN08wuBbmvyA9AfC6U9Ojq7qNW0QUqR-pJj3CMfUtxCQxjkmHOIjuXNwjJhduCC7l9Wufs037-u3-nmTe8tSrmVnDZTCOtcoyVWnjbaAIJQ7a4Om1KJBjdC4lkkLVpSGAygnJSrbVXJBlv-zHhEPp-AHCPPhcon8BXbbVkU</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Raghavendra, B. S.</creator><creator>Bera, D.</creator><creator>Bopardikar, A. S.</creator><creator>Narayanan, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</title><author>Raghavendra, B. S. ; Bera, D. ; Bopardikar, A. S. ; Narayanan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>cardiac arrhythmia detection</topic><topic>Classification algorithms</topic><topic>dynamic time warping</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Mobile communication</topic><topic>Morphology</topic><topic>Real time systems</topic><topic>smart-phone</topic><topic>Training</topic><topic>wearable system</topic><toplevel>online_resources</toplevel><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Bera, D.</creatorcontrib><creatorcontrib>Bopardikar, A. S.</creatorcontrib><creatorcontrib>Narayanan, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raghavendra, B. S.</au><au>Bera, D.</au><au>Bopardikar, A. S.</au><au>Narayanan, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems</atitle><btitle>2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks</btitle><stitle>WoWMoM</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781457703522</isbn><isbn>1457703521</isbn><eisbn>9781457703515</eisbn><eisbn>1457703513</eisbn><eisbn>1457703505</eisbn><eisbn>9781457703508</eisbn><abstract>Automatic real-time detection and classification of ECG patterns is of great importance in early diagnosis and treatment of life-threatening cardiac arrhythmia. In this paper, we have presented dynamic time warping (DTW) distance based approach for classification of arrhythmic ECG beats, with an aim of using it in smart-phone/mobile environment. The performance of the proposed method is tested on ECG beats of various arrhythmia types selected from MIT-BIH arrhythmia database. We have compared the proposed DTW approach using naïve Bayes classifier with relative band spectral power as feature. The DTW approach has shown superior performance compared to the naïve Bayes classifier. Furthermore, we have verified the performance of the DTW approach on down-sampled ECG beats in order to improve speed of the DTW algorithm. It is observed that the performance of the DTW approach did not deteriorate even after subsampling of ECG beats. The DTW with subsampling has been aimed at real-time arrhythmia detection in wearable mobile healthcare systems in telemedicine scenario for continuous monitoring of ECG records from cardiac patients.</abstract><pub>IEEE</pub><doi>10.1109/WoWMoM.2011.5986196</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457703522
ispartof 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2011, p.1-6
issn
language eng
recordid cdi_ieee_primary_5986196
source IEEE Electronic Library (IEL) Conference Proceedings
subjects cardiac arrhythmia detection
Classification algorithms
dynamic time warping
Electrocardiogram
Electrocardiography
Mobile communication
Morphology
Real time systems
smart-phone
Training
wearable system
title Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cardiac%20arrhythmia%20detection%20using%20dynamic%20time%20warping%20of%20ECG%20beats%20in%20e-healthcare%20systems&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20a%20World%20of%20Wireless,%20Mobile%20and%20Multimedia%20Networks&rft.au=Raghavendra,%20B.%20S.&rft.date=2011-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781457703522&rft.isbn_list=1457703521&rft_id=info:doi/10.1109/WoWMoM.2011.5986196&rft.eisbn=9781457703515&rft.eisbn_list=1457703513&rft.eisbn_list=1457703505&rft.eisbn_list=9781457703508&rft_dat=%3Cieee_6IE%3E5986196%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-63d98a429ffb5315d6869aea25f8a48e8462be6eabfc039a92481aa5f33e59d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5986196&rfr_iscdi=true