Loading…
Modeling Mobile Learning System Using ANFIS
Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from co...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 380 |
container_issue | |
container_start_page | 378 |
container_title | |
container_volume | |
creator | Al-Hmouz, Ahmed Jun Shen Jun Yan Al-Hmouz, R. |
description | Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement. |
doi_str_mv | 10.1109/ICALT.2011.119 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5992351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5992351</ieee_id><sourcerecordid>5992351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23</originalsourceid><addsrcrecordid>eNo9jktLw0AUhccXWGq2btxkL6lz77yXpVgtpLpoBHdlMrkjA2krSTf99yZVXB0-PjjnMHYPfAbA3dNqMS-rGXKAgd0Fy5yx3GinpJDaXrIJgoZCGPN5dXYDoZXInbn-dxpuWdb3qeaojVZK8wl7XB8aatP-K18f6tRSXpLv9iNvTv2RdvlHP8L8bbna3LGb6Nuesr-csmr5XC1ei_L9ZfxXJMePRQxcggfTWJSgI1phrIrBBh6tCd5BLf0wHxqF0RF60k3jSQkrFAZDKKbs4bc2EdH2u0s73522yjkUCsQPY5ZFvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling Mobile Learning System Using ANFIS</title><source>IEEE Xplore All Conference Series</source><creator>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</creator><creatorcontrib>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</creatorcontrib><description>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</description><identifier>ISSN: 2161-3761</identifier><identifier>ISBN: 9781612842097</identifier><identifier>ISBN: 1612842097</identifier><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 9780769543468</identifier><identifier>EISBN: 0769543464</identifier><identifier>DOI: 10.1109/ICALT.2011.119</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation ; Adaptation models ; Adaptive systems ; ANFIS ; Context ; Mathematical model ; Mobile communication ; Mobile Learning ; Training ; Training data</subject><ispartof>2011 IEEE 11th International Conference on Advanced Learning Technologies, 2011, p.378-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5992351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5992351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Hmouz, Ahmed</creatorcontrib><creatorcontrib>Jun Shen</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Al-Hmouz, R.</creatorcontrib><title>Modeling Mobile Learning System Using ANFIS</title><title>2011 IEEE 11th International Conference on Advanced Learning Technologies</title><addtitle>icalt</addtitle><description>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>ANFIS</subject><subject>Context</subject><subject>Mathematical model</subject><subject>Mobile communication</subject><subject>Mobile Learning</subject><subject>Training</subject><subject>Training data</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>9781612842097</isbn><isbn>1612842097</isbn><isbn>9780769543468</isbn><isbn>0769543464</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jktLw0AUhccXWGq2btxkL6lz77yXpVgtpLpoBHdlMrkjA2krSTf99yZVXB0-PjjnMHYPfAbA3dNqMS-rGXKAgd0Fy5yx3GinpJDaXrIJgoZCGPN5dXYDoZXInbn-dxpuWdb3qeaojVZK8wl7XB8aatP-K18f6tRSXpLv9iNvTv2RdvlHP8L8bbna3LGb6Nuesr-csmr5XC1ei_L9ZfxXJMePRQxcggfTWJSgI1phrIrBBh6tCd5BLf0wHxqF0RF60k3jSQkrFAZDKKbs4bc2EdH2u0s73522yjkUCsQPY5ZFvg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Al-Hmouz, Ahmed</creator><creator>Jun Shen</creator><creator>Jun Yan</creator><creator>Al-Hmouz, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Modeling Mobile Learning System Using ANFIS</title><author>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>ANFIS</topic><topic>Context</topic><topic>Mathematical model</topic><topic>Mobile communication</topic><topic>Mobile Learning</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Hmouz, Ahmed</creatorcontrib><creatorcontrib>Jun Shen</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Al-Hmouz, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Hmouz, Ahmed</au><au>Jun Shen</au><au>Jun Yan</au><au>Al-Hmouz, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling Mobile Learning System Using ANFIS</atitle><btitle>2011 IEEE 11th International Conference on Advanced Learning Technologies</btitle><stitle>icalt</stitle><date>2011-07</date><risdate>2011</risdate><spage>378</spage><epage>380</epage><pages>378-380</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><isbn>9781612842097</isbn><isbn>1612842097</isbn><eisbn>9780769543468</eisbn><eisbn>0769543464</eisbn><abstract>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2011.119</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-3761 |
ispartof | 2011 IEEE 11th International Conference on Advanced Learning Technologies, 2011, p.378-380 |
issn | 2161-3761 2161-377X |
language | eng |
recordid | cdi_ieee_primary_5992351 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation Adaptation models Adaptive systems ANFIS Context Mathematical model Mobile communication Mobile Learning Training Training data |
title | Modeling Mobile Learning System Using ANFIS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20Mobile%20Learning%20System%20Using%20ANFIS&rft.btitle=2011%20IEEE%2011th%20International%20Conference%20on%20Advanced%20Learning%20Technologies&rft.au=Al-Hmouz,%20Ahmed&rft.date=2011-07&rft.spage=378&rft.epage=380&rft.pages=378-380&rft.issn=2161-3761&rft.eissn=2161-377X&rft.isbn=9781612842097&rft.isbn_list=1612842097&rft_id=info:doi/10.1109/ICALT.2011.119&rft.eisbn=9780769543468&rft.eisbn_list=0769543464&rft_dat=%3Cieee_CHZPO%3E5992351%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5992351&rfr_iscdi=true |