Loading…

Modeling Mobile Learning System Using ANFIS

Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from co...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Hmouz, Ahmed, Jun Shen, Jun Yan, Al-Hmouz, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 380
container_issue
container_start_page 378
container_title
container_volume
creator Al-Hmouz, Ahmed
Jun Shen
Jun Yan
Al-Hmouz, R.
description Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.
doi_str_mv 10.1109/ICALT.2011.119
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5992351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5992351</ieee_id><sourcerecordid>5992351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23</originalsourceid><addsrcrecordid>eNo9jktLw0AUhccXWGq2btxkL6lz77yXpVgtpLpoBHdlMrkjA2krSTf99yZVXB0-PjjnMHYPfAbA3dNqMS-rGXKAgd0Fy5yx3GinpJDaXrIJgoZCGPN5dXYDoZXInbn-dxpuWdb3qeaojVZK8wl7XB8aatP-K18f6tRSXpLv9iNvTv2RdvlHP8L8bbna3LGb6Nuesr-csmr5XC1ei_L9ZfxXJMePRQxcggfTWJSgI1phrIrBBh6tCd5BLf0wHxqF0RF60k3jSQkrFAZDKKbs4bc2EdH2u0s73522yjkUCsQPY5ZFvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling Mobile Learning System Using ANFIS</title><source>IEEE Xplore All Conference Series</source><creator>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</creator><creatorcontrib>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</creatorcontrib><description>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</description><identifier>ISSN: 2161-3761</identifier><identifier>ISBN: 9781612842097</identifier><identifier>ISBN: 1612842097</identifier><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 9780769543468</identifier><identifier>EISBN: 0769543464</identifier><identifier>DOI: 10.1109/ICALT.2011.119</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation ; Adaptation models ; Adaptive systems ; ANFIS ; Context ; Mathematical model ; Mobile communication ; Mobile Learning ; Training ; Training data</subject><ispartof>2011 IEEE 11th International Conference on Advanced Learning Technologies, 2011, p.378-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5992351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5992351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Hmouz, Ahmed</creatorcontrib><creatorcontrib>Jun Shen</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Al-Hmouz, R.</creatorcontrib><title>Modeling Mobile Learning System Using ANFIS</title><title>2011 IEEE 11th International Conference on Advanced Learning Technologies</title><addtitle>icalt</addtitle><description>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>ANFIS</subject><subject>Context</subject><subject>Mathematical model</subject><subject>Mobile communication</subject><subject>Mobile Learning</subject><subject>Training</subject><subject>Training data</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>9781612842097</isbn><isbn>1612842097</isbn><isbn>9780769543468</isbn><isbn>0769543464</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jktLw0AUhccXWGq2btxkL6lz77yXpVgtpLpoBHdlMrkjA2krSTf99yZVXB0-PjjnMHYPfAbA3dNqMS-rGXKAgd0Fy5yx3GinpJDaXrIJgoZCGPN5dXYDoZXInbn-dxpuWdb3qeaojVZK8wl7XB8aatP-K18f6tRSXpLv9iNvTv2RdvlHP8L8bbna3LGb6Nuesr-csmr5XC1ei_L9ZfxXJMePRQxcggfTWJSgI1phrIrBBh6tCd5BLf0wHxqF0RF60k3jSQkrFAZDKKbs4bc2EdH2u0s73522yjkUCsQPY5ZFvg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Al-Hmouz, Ahmed</creator><creator>Jun Shen</creator><creator>Jun Yan</creator><creator>Al-Hmouz, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Modeling Mobile Learning System Using ANFIS</title><author>Al-Hmouz, Ahmed ; Jun Shen ; Jun Yan ; Al-Hmouz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>ANFIS</topic><topic>Context</topic><topic>Mathematical model</topic><topic>Mobile communication</topic><topic>Mobile Learning</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Hmouz, Ahmed</creatorcontrib><creatorcontrib>Jun Shen</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Al-Hmouz, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Hmouz, Ahmed</au><au>Jun Shen</au><au>Jun Yan</au><au>Al-Hmouz, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling Mobile Learning System Using ANFIS</atitle><btitle>2011 IEEE 11th International Conference on Advanced Learning Technologies</btitle><stitle>icalt</stitle><date>2011-07</date><risdate>2011</risdate><spage>378</spage><epage>380</epage><pages>378-380</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><isbn>9781612842097</isbn><isbn>1612842097</isbn><eisbn>9780769543468</eisbn><eisbn>0769543464</eisbn><abstract>Personalisation is becoming more important in the area of mobile learning. Learner model is logically partitioned into smaller elements or classes in the form of learner profiles, which can represent the entire learning process. Machine learning techniques have the ability to detect patterns from complicated data and learn how to perform activities based on learner profiles. This paper focuses on a systematic approach in reasoning the learner contexts to deliver adaptive learning content. A fuzzy rule base model that has been proposed in related work is found insufficient in deciding all possible conditions. To tackle this problem, this paper adopts the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to determine all possible conditions. ANFIS uses the hybrid (least-squares method and the back propagation gradient descent method) as learning mechanism for the Neural Network to determine the incompleteness in the decision made by human experts. The simulating results by Matlab indicate that the performance of ANFIS approach is valuable and easy to implement.</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2011.119</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-3761
ispartof 2011 IEEE 11th International Conference on Advanced Learning Technologies, 2011, p.378-380
issn 2161-3761
2161-377X
language eng
recordid cdi_ieee_primary_5992351
source IEEE Xplore All Conference Series
subjects Adaptation
Adaptation models
Adaptive systems
ANFIS
Context
Mathematical model
Mobile communication
Mobile Learning
Training
Training data
title Modeling Mobile Learning System Using ANFIS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20Mobile%20Learning%20System%20Using%20ANFIS&rft.btitle=2011%20IEEE%2011th%20International%20Conference%20on%20Advanced%20Learning%20Technologies&rft.au=Al-Hmouz,%20Ahmed&rft.date=2011-07&rft.spage=378&rft.epage=380&rft.pages=378-380&rft.issn=2161-3761&rft.eissn=2161-377X&rft.isbn=9781612842097&rft.isbn_list=1612842097&rft_id=info:doi/10.1109/ICALT.2011.119&rft.eisbn=9780769543468&rft.eisbn_list=0769543464&rft_dat=%3Cieee_CHZPO%3E5992351%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-fc041a17d82416f283785fc8c0f87ca91b4a676cd52f9e2ae6ddae538352c7e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5992351&rfr_iscdi=true