Loading…

A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths

The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Ram, D. S. H., Bhuvaneswari, M. C., Logesh, S. M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 295
container_issue
container_start_page 290
container_title
container_volume
creator Ram, D. S. H.
Bhuvaneswari, M. C.
Logesh, S. M.
description The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology for area, power and delay optimization using the Non-dominated Sorting Genetic Algorithm II (NSGA II). A metric based technique has been used to determine the likelihood of a schedule to yield low power solutions during binding. Actual power numbers are not determined since this is computationally expensive. The methodology has been evaluated on standard benchmark Data-Flow Graphs (DFGs) and results indicate that it yields improved solutions with better diversity when compared to a weighted sum GA approach. For the IIR benchmark, it was observed that the NSGA II was able to converge to the true Pareto front obtained from exhaustive search.
doi_str_mv 10.1109/ISVLSI.2011.55
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5992521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5992521</ieee_id><sourcerecordid>5992521</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-152f153bcd5b9740ec948d3f76460d7d483179ae55527bfa8a6ebad9941f78b83</originalsourceid><addsrcrecordid>eNo9z81OwkAUhuHxLxGRrRs35wIszm-nsySCQlLFBHRLpu2pHVJabAcMXL2gxtW3eJI3-Qi5YbTPGDX3k9l7PJv0OWWsr9QJ6RkdUR0aJaXU_JR0OFMmEFLrsx9jUmlNIyrM-b-F5pJcte2SUnFw3iH7AbzUWyxhtK3LjXd1ZZsdzDEtKve5QcjrBp43pXdBnSwx9W6L8Fp_YXMHgwYt2CqDIZZ2B9O1dyu3t8cGuArG7qOAGI_t2a7yBbauhTqHofV2bX3RXpOL3JYt9v62S94eR_OHcRBPnyYPgzhwTCsfMMVzpkSSZioxWlJMjYwyketQhjTTmYwE08aiUorrJLeRDTGxmTGS5TpKItElt79dh4iLdeNWh4sLZQxXnIlvPXdijQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ram, D. S. H. ; Bhuvaneswari, M. C. ; Logesh, S. M.</creator><creatorcontrib>Ram, D. S. H. ; Bhuvaneswari, M. C. ; Logesh, S. M.</creatorcontrib><description>The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology for area, power and delay optimization using the Non-dominated Sorting Genetic Algorithm II (NSGA II). A metric based technique has been used to determine the likelihood of a schedule to yield low power solutions during binding. Actual power numbers are not determined since this is computationally expensive. The methodology has been evaluated on standard benchmark Data-Flow Graphs (DFGs) and results indicate that it yields improved solutions with better diversity when compared to a weighted sum GA approach. For the IIR benchmark, it was observed that the NSGA II was able to converge to the true Pareto front obtained from exhaustive search.</description><identifier>ISSN: 2159-3469</identifier><identifier>ISBN: 9781457708039</identifier><identifier>ISBN: 1457708035</identifier><identifier>EISSN: 2159-3477</identifier><identifier>EISBN: 9780769544472</identifier><identifier>EISBN: 0769544479</identifier><identifier>DOI: 10.1109/ISVLSI.2011.55</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral synthesis ; Benchmark testing ; Biological cells ; Delay ; evolutionary computation ; Genetic algorithms ; high-level synthesis ; low power design ; multi-objective optimization ; Optimization ; Schedules ; System level design</subject><ispartof>2011 IEEE Computer Society Annual Symposium on VLSI, 2011, p.290-295</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5992521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5992521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ram, D. S. H.</creatorcontrib><creatorcontrib>Bhuvaneswari, M. C.</creatorcontrib><creatorcontrib>Logesh, S. M.</creatorcontrib><title>A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths</title><title>2011 IEEE Computer Society Annual Symposium on VLSI</title><addtitle>isvlsi</addtitle><description>The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology for area, power and delay optimization using the Non-dominated Sorting Genetic Algorithm II (NSGA II). A metric based technique has been used to determine the likelihood of a schedule to yield low power solutions during binding. Actual power numbers are not determined since this is computationally expensive. The methodology has been evaluated on standard benchmark Data-Flow Graphs (DFGs) and results indicate that it yields improved solutions with better diversity when compared to a weighted sum GA approach. For the IIR benchmark, it was observed that the NSGA II was able to converge to the true Pareto front obtained from exhaustive search.</description><subject>Behavioral synthesis</subject><subject>Benchmark testing</subject><subject>Biological cells</subject><subject>Delay</subject><subject>evolutionary computation</subject><subject>Genetic algorithms</subject><subject>high-level synthesis</subject><subject>low power design</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Schedules</subject><subject>System level design</subject><issn>2159-3469</issn><issn>2159-3477</issn><isbn>9781457708039</isbn><isbn>1457708035</isbn><isbn>9780769544472</isbn><isbn>0769544479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9z81OwkAUhuHxLxGRrRs35wIszm-nsySCQlLFBHRLpu2pHVJabAcMXL2gxtW3eJI3-Qi5YbTPGDX3k9l7PJv0OWWsr9QJ6RkdUR0aJaXU_JR0OFMmEFLrsx9jUmlNIyrM-b-F5pJcte2SUnFw3iH7AbzUWyxhtK3LjXd1ZZsdzDEtKve5QcjrBp43pXdBnSwx9W6L8Fp_YXMHgwYt2CqDIZZ2B9O1dyu3t8cGuArG7qOAGI_t2a7yBbauhTqHofV2bX3RXpOL3JYt9v62S94eR_OHcRBPnyYPgzhwTCsfMMVzpkSSZioxWlJMjYwyketQhjTTmYwE08aiUorrJLeRDTGxmTGS5TpKItElt79dh4iLdeNWh4sLZQxXnIlvPXdijQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Ram, D. S. H.</creator><creator>Bhuvaneswari, M. C.</creator><creator>Logesh, S. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths</title><author>Ram, D. S. H. ; Bhuvaneswari, M. C. ; Logesh, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-152f153bcd5b9740ec948d3f76460d7d483179ae55527bfa8a6ebad9941f78b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Behavioral synthesis</topic><topic>Benchmark testing</topic><topic>Biological cells</topic><topic>Delay</topic><topic>evolutionary computation</topic><topic>Genetic algorithms</topic><topic>high-level synthesis</topic><topic>low power design</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Schedules</topic><topic>System level design</topic><toplevel>online_resources</toplevel><creatorcontrib>Ram, D. S. H.</creatorcontrib><creatorcontrib>Bhuvaneswari, M. C.</creatorcontrib><creatorcontrib>Logesh, S. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ram, D. S. H.</au><au>Bhuvaneswari, M. C.</au><au>Logesh, S. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths</atitle><btitle>2011 IEEE Computer Society Annual Symposium on VLSI</btitle><stitle>isvlsi</stitle><date>2011-07</date><risdate>2011</risdate><spage>290</spage><epage>295</epage><pages>290-295</pages><issn>2159-3469</issn><eissn>2159-3477</eissn><isbn>9781457708039</isbn><isbn>1457708035</isbn><eisbn>9780769544472</eisbn><eisbn>0769544479</eisbn><abstract>The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology for area, power and delay optimization using the Non-dominated Sorting Genetic Algorithm II (NSGA II). A metric based technique has been used to determine the likelihood of a schedule to yield low power solutions during binding. Actual power numbers are not determined since this is computationally expensive. The methodology has been evaluated on standard benchmark Data-Flow Graphs (DFGs) and results indicate that it yields improved solutions with better diversity when compared to a weighted sum GA approach. For the IIR benchmark, it was observed that the NSGA II was able to converge to the true Pareto front obtained from exhaustive search.</abstract><pub>IEEE</pub><doi>10.1109/ISVLSI.2011.55</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3469
ispartof 2011 IEEE Computer Society Annual Symposium on VLSI, 2011, p.290-295
issn 2159-3469
2159-3477
language eng
recordid cdi_ieee_primary_5992521
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Behavioral synthesis
Benchmark testing
Biological cells
Delay
evolutionary computation
Genetic algorithms
high-level synthesis
low power design
multi-objective optimization
Optimization
Schedules
System level design
title A Novel Evolutionary Technique for Multi-objective Power, Area and Delay Optimization in High Level Synthesis of Datapaths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Evolutionary%20Technique%20for%20Multi-objective%20Power,%20Area%20and%20Delay%20Optimization%20in%20High%20Level%20Synthesis%20of%20Datapaths&rft.btitle=2011%20IEEE%20Computer%20Society%20Annual%20Symposium%20on%20VLSI&rft.au=Ram,%20D.%20S.%20H.&rft.date=2011-07&rft.spage=290&rft.epage=295&rft.pages=290-295&rft.issn=2159-3469&rft.eissn=2159-3477&rft.isbn=9781457708039&rft.isbn_list=1457708035&rft_id=info:doi/10.1109/ISVLSI.2011.55&rft.eisbn=9780769544472&rft.eisbn_list=0769544479&rft_dat=%3Cieee_6IE%3E5992521%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-152f153bcd5b9740ec948d3f76460d7d483179ae55527bfa8a6ebad9941f78b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5992521&rfr_iscdi=true