Loading…
SEE evaluation of a low-power 1μm-SOI 80C51 for extremely harsh environments
In this paper, we present the SEE characterization of an 80C51 microcontroller optimized for high temperature and low-power applications. Its microarchitecture has been completely redesigned with deep low-power optimizations. It has been manufactured in a 1μm SOI process with tungsten metallization...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present the SEE characterization of an 80C51 microcontroller optimized for high temperature and low-power applications. Its microarchitecture has been completely redesigned with deep low-power optimizations. It has been manufactured in a 1μm SOI process with tungsten metallization layers ensuring a high sustained operating temperature of 225°C. The SEE characterization presented here have been carried out in the Cyclotron Research Centre of Louvain-la-Neuve. It shows a very high threshold LET of 90 MeV/mg/cm 2 at a nominal Vdd of 5 V, while it is latchup immune due to SOI. Thanks to the power-optimized microarchitecture, its power consumption is only 8.5 mW/MIPS, which is close to a LEON2 FT manufactured in a far more sensitive 0.18μm process, making it a very low-power 80C51 for extremely harsh environments. Hardening by using a harsh process allows to use standard design tools and advanced aggressive low-power techniques. Even if the SOI 1μm technology used here is very big, results obtained in this work show that it can compete for low-power microcontrollers with a 0.18μm sub-micron technology hardened by using power hungry tripple modular redundancy. Whereas this harsh process approach offers quite better SEE tolerance. |
---|---|
ISSN: | 0379-6566 |
DOI: | 10.1109/RADECS.2009.5994718 |