Loading…
Robot belt grinding trajectory optimization based on GLS-PSO
To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Lo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | chi ; eng |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5423 |
container_issue | |
container_start_page | 5418 |
container_title | |
container_volume | |
creator | Yang Hongjun Song Yixu Liang Wei Jia Peifa |
description | To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6001141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6001141</ieee_id><sourcerecordid>6001141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQOMLnNZ-gZv8QODeZJKbgBspWoWBitV1SSaZktLOlJls6tdb0NU5i8O5YjNnLZLU2qlrVkk0KKSTdMMWjizWmggMkbllFTpVCyRj79lsmvYABhyqij19DmEoPKRD4bsx9zH3O15Gv09tGcYzH04lH_OPL3noefBTivwiq2YjPjbrB3bX-cOUFv-cs-_Xl6_lm2jWq_flcyMygi4iBEJAA52RFJSULSprXWqlAoO172wEilFdGnKoYwBPHUqgzkSvySc1Z49_35xS2p7GfPTjeWsAEGtUv9APRYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</creator><creatorcontrib>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</creatorcontrib><description>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9781457706776</identifier><identifier>ISBN: 1457706776</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9881725593</identifier><identifier>EISBN: 9789881725592</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Belts ; Electronic mail ; Genetic Algorithm ; Genetics ; Local Search ; Optimization ; Particle Swarm Optimization ; Robotic Belt Grinding ; Robots ; Support vector machines ; Trajectory ; Trajectory Optimization</subject><ispartof>Proceedings of the 30th Chinese Control Conference, 2011, p.5418-5423</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6001141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6001141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Hongjun</creatorcontrib><creatorcontrib>Song Yixu</creatorcontrib><creatorcontrib>Liang Wei</creatorcontrib><creatorcontrib>Jia Peifa</creatorcontrib><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><title>Proceedings of the 30th Chinese Control Conference</title><addtitle>CHICC</addtitle><description>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</description><subject>Belts</subject><subject>Electronic mail</subject><subject>Genetic Algorithm</subject><subject>Genetics</subject><subject>Local Search</subject><subject>Optimization</subject><subject>Particle Swarm Optimization</subject><subject>Robotic Belt Grinding</subject><subject>Robots</subject><subject>Support vector machines</subject><subject>Trajectory</subject><subject>Trajectory Optimization</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9781457706776</isbn><isbn>1457706776</isbn><isbn>9881725593</isbn><isbn>9789881725592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKAzEUQOMLnNZ-gZv8QODeZJKbgBspWoWBitV1SSaZktLOlJls6tdb0NU5i8O5YjNnLZLU2qlrVkk0KKSTdMMWjizWmggMkbllFTpVCyRj79lsmvYABhyqij19DmEoPKRD4bsx9zH3O15Gv09tGcYzH04lH_OPL3noefBTivwiq2YjPjbrB3bX-cOUFv-cs-_Xl6_lm2jWq_flcyMygi4iBEJAA52RFJSULSprXWqlAoO172wEilFdGnKoYwBPHUqgzkSvySc1Z49_35xS2p7GfPTjeWsAEGtUv9APRYc</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Yang Hongjun</creator><creator>Song Yixu</creator><creator>Liang Wei</creator><creator>Jia Peifa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><author>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Belts</topic><topic>Electronic mail</topic><topic>Genetic Algorithm</topic><topic>Genetics</topic><topic>Local Search</topic><topic>Optimization</topic><topic>Particle Swarm Optimization</topic><topic>Robotic Belt Grinding</topic><topic>Robots</topic><topic>Support vector machines</topic><topic>Trajectory</topic><topic>Trajectory Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Hongjun</creatorcontrib><creatorcontrib>Song Yixu</creatorcontrib><creatorcontrib>Liang Wei</creatorcontrib><creatorcontrib>Jia Peifa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Hongjun</au><au>Song Yixu</au><au>Liang Wei</au><au>Jia Peifa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robot belt grinding trajectory optimization based on GLS-PSO</atitle><btitle>Proceedings of the 30th Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2011-07</date><risdate>2011</risdate><spage>5418</spage><epage>5423</epage><pages>5418-5423</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9781457706776</isbn><isbn>1457706776</isbn><eisbn>9881725593</eisbn><eisbn>9789881725592</eisbn><abstract>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | Proceedings of the 30th Chinese Control Conference, 2011, p.5418-5423 |
issn | 1934-1768 2161-2927 |
language | chi ; eng |
recordid | cdi_ieee_primary_6001141 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Belts Electronic mail Genetic Algorithm Genetics Local Search Optimization Particle Swarm Optimization Robotic Belt Grinding Robots Support vector machines Trajectory Trajectory Optimization |
title | Robot belt grinding trajectory optimization based on GLS-PSO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robot%20belt%20grinding%20trajectory%20optimization%20based%20on%20GLS-PSO&rft.btitle=Proceedings%20of%20the%2030th%20Chinese%20Control%20Conference&rft.au=Yang%20Hongjun&rft.date=2011-07&rft.spage=5418&rft.epage=5423&rft.pages=5418-5423&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9781457706776&rft.isbn_list=1457706776&rft_id=info:doi/&rft.eisbn=9881725593&rft.eisbn_list=9789881725592&rft_dat=%3Cieee_6IE%3E6001141%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6001141&rfr_iscdi=true |