Loading…

Robot belt grinding trajectory optimization based on GLS-PSO

To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Lo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Hongjun, Song Yixu, Liang Wei, Jia Peifa
Format: Conference Proceeding
Language:chi ; eng
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5423
container_issue
container_start_page 5418
container_title
container_volume
creator Yang Hongjun
Song Yixu
Liang Wei
Jia Peifa
description To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6001141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6001141</ieee_id><sourcerecordid>6001141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQOMLnNZ-gZv8QODeZJKbgBspWoWBitV1SSaZktLOlJls6tdb0NU5i8O5YjNnLZLU2qlrVkk0KKSTdMMWjizWmggMkbllFTpVCyRj79lsmvYABhyqij19DmEoPKRD4bsx9zH3O15Gv09tGcYzH04lH_OPL3noefBTivwiq2YjPjbrB3bX-cOUFv-cs-_Xl6_lm2jWq_flcyMygi4iBEJAA52RFJSULSprXWqlAoO172wEilFdGnKoYwBPHUqgzkSvySc1Z49_35xS2p7GfPTjeWsAEGtUv9APRYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</creator><creatorcontrib>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</creatorcontrib><description>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9781457706776</identifier><identifier>ISBN: 1457706776</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9881725593</identifier><identifier>EISBN: 9789881725592</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Belts ; Electronic mail ; Genetic Algorithm ; Genetics ; Local Search ; Optimization ; Particle Swarm Optimization ; Robotic Belt Grinding ; Robots ; Support vector machines ; Trajectory ; Trajectory Optimization</subject><ispartof>Proceedings of the 30th Chinese Control Conference, 2011, p.5418-5423</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6001141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6001141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Hongjun</creatorcontrib><creatorcontrib>Song Yixu</creatorcontrib><creatorcontrib>Liang Wei</creatorcontrib><creatorcontrib>Jia Peifa</creatorcontrib><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><title>Proceedings of the 30th Chinese Control Conference</title><addtitle>CHICC</addtitle><description>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</description><subject>Belts</subject><subject>Electronic mail</subject><subject>Genetic Algorithm</subject><subject>Genetics</subject><subject>Local Search</subject><subject>Optimization</subject><subject>Particle Swarm Optimization</subject><subject>Robotic Belt Grinding</subject><subject>Robots</subject><subject>Support vector machines</subject><subject>Trajectory</subject><subject>Trajectory Optimization</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9781457706776</isbn><isbn>1457706776</isbn><isbn>9881725593</isbn><isbn>9789881725592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKAzEUQOMLnNZ-gZv8QODeZJKbgBspWoWBitV1SSaZktLOlJls6tdb0NU5i8O5YjNnLZLU2qlrVkk0KKSTdMMWjizWmggMkbllFTpVCyRj79lsmvYABhyqij19DmEoPKRD4bsx9zH3O15Gv09tGcYzH04lH_OPL3noefBTivwiq2YjPjbrB3bX-cOUFv-cs-_Xl6_lm2jWq_flcyMygi4iBEJAA52RFJSULSprXWqlAoO172wEilFdGnKoYwBPHUqgzkSvySc1Z49_35xS2p7GfPTjeWsAEGtUv9APRYc</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Yang Hongjun</creator><creator>Song Yixu</creator><creator>Liang Wei</creator><creator>Jia Peifa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Robot belt grinding trajectory optimization based on GLS-PSO</title><author>Yang Hongjun ; Song Yixu ; Liang Wei ; Jia Peifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Belts</topic><topic>Electronic mail</topic><topic>Genetic Algorithm</topic><topic>Genetics</topic><topic>Local Search</topic><topic>Optimization</topic><topic>Particle Swarm Optimization</topic><topic>Robotic Belt Grinding</topic><topic>Robots</topic><topic>Support vector machines</topic><topic>Trajectory</topic><topic>Trajectory Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Hongjun</creatorcontrib><creatorcontrib>Song Yixu</creatorcontrib><creatorcontrib>Liang Wei</creatorcontrib><creatorcontrib>Jia Peifa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Hongjun</au><au>Song Yixu</au><au>Liang Wei</au><au>Jia Peifa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robot belt grinding trajectory optimization based on GLS-PSO</atitle><btitle>Proceedings of the 30th Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2011-07</date><risdate>2011</risdate><spage>5418</spage><epage>5423</epage><pages>5418-5423</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9781457706776</isbn><isbn>1457706776</isbn><eisbn>9881725593</eisbn><eisbn>9789881725592</eisbn><abstract>To automatically generate the reference trajectory of control parameters in robot belt grinding system, this paper presents a Genetic and Local Search-based Particle Swarm Optimization Algorithm to optimize two main parameters, contact force and feed rate. The proposed approach takes advantage of Local Search Technology to accelerate the learning and searching process, which is expected to improve the quality of particles as well; Meanwhile, Genetic crossover between individuals is used to combine good genes to produce better offspring. The experimental results show that the GLS-PSO is superior to LS-PSO, G-PSO and S-SPO in terms of both algorithm performance and optimized effects. In addition, the proposed GLS-PSO algorithm meets the requirements of industrial control in robotic belt grinding, which demonstrates the feasibility of this method.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof Proceedings of the 30th Chinese Control Conference, 2011, p.5418-5423
issn 1934-1768
2161-2927
language chi ; eng
recordid cdi_ieee_primary_6001141
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Belts
Electronic mail
Genetic Algorithm
Genetics
Local Search
Optimization
Particle Swarm Optimization
Robotic Belt Grinding
Robots
Support vector machines
Trajectory
Trajectory Optimization
title Robot belt grinding trajectory optimization based on GLS-PSO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robot%20belt%20grinding%20trajectory%20optimization%20based%20on%20GLS-PSO&rft.btitle=Proceedings%20of%20the%2030th%20Chinese%20Control%20Conference&rft.au=Yang%20Hongjun&rft.date=2011-07&rft.spage=5418&rft.epage=5423&rft.pages=5418-5423&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9781457706776&rft.isbn_list=1457706776&rft_id=info:doi/&rft.eisbn=9881725593&rft.eisbn_list=9789881725592&rft_dat=%3Cieee_6IE%3E6001141%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-bb710160f627b322c13889ec230614af8d07dd31017915db0a7f1207f6da57ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6001141&rfr_iscdi=true