Loading…
A feasible set swelling homotopy method for general nonlinear programming
This paper provides a non-interior homotopy method for nonlinear programming with general equality and inequality constraints. Under a weak assumption for a swelled feasible set as well as several basic conditions for nonlinear programming, existence and convergence of a smooth homotopy path are pro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1887 |
container_issue | |
container_start_page | 1884 |
container_title | |
container_volume | |
creator | Zhengyong Zhou Bo Yu Yufeng Shang |
description | This paper provides a non-interior homotopy method for nonlinear programming with general equality and inequality constraints. Under a weak assumption for a swelled feasible set as well as several basic conditions for nonlinear programming, existence and convergence of a smooth homotopy path are proven. In addition, the starting point is not needed to be a feasible interior point of the original feasible set, and can be chosen freely in a bounded ball region, hence this homotopy method can be implemented conveniently. |
doi_str_mv | 10.1109/ICMT.2011.6002563 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6002563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6002563</ieee_id><sourcerecordid>6002563</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7f8817e1e87c35b908c90fed92f298b132e39aa2e53a53cf71996ead3026ff953</originalsourceid><addsrcrecordid>eNpFj0FLxDAUhCMiqOv-APGSP9Cal7RJ3nEp6hZWvPS-pO1Lt9I2JS3I_nsXXHAuw8A3A8PYM4gUQOBrWXxWqRQAqRZC5lrdsEfQIG1mTIa3_wGye7Zdlm9xkdaoLD6wcsc9uaWvB-ILrXz5oWHop46fwhjWMJ_5SOsptNyHyDuaKLqBT2G6MOQin2PoohvHS-OJ3Xk3LLS9-oZV729VsU8OXx9lsTskPYo1Md5aMARkTaPyGoVtUHhqUXqJtgYlSaFzknLlctV4A4iaXKuE1N5jrjbs5W-2J6LjHPvRxfPx-lz9Ai99TUc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A feasible set swelling homotopy method for general nonlinear programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhengyong Zhou ; Bo Yu ; Yufeng Shang</creator><creatorcontrib>Zhengyong Zhou ; Bo Yu ; Yufeng Shang</creatorcontrib><description>This paper provides a non-interior homotopy method for nonlinear programming with general equality and inequality constraints. Under a weak assumption for a swelled feasible set as well as several basic conditions for nonlinear programming, existence and convergence of a smooth homotopy path are proven. In addition, the starting point is not needed to be a feasible interior point of the original feasible set, and can be chosen freely in a bounded ball region, hence this homotopy method can be implemented conveniently.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6002563</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Electronic mail ; Equations ; Games ; global convergence ; homotopy method ; nonlinear programming ; Prediction algorithms ; Programming</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.1884-1887</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6002563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6002563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhengyong Zhou</creatorcontrib><creatorcontrib>Bo Yu</creatorcontrib><creatorcontrib>Yufeng Shang</creatorcontrib><title>A feasible set swelling homotopy method for general nonlinear programming</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>This paper provides a non-interior homotopy method for nonlinear programming with general equality and inequality constraints. Under a weak assumption for a swelled feasible set as well as several basic conditions for nonlinear programming, existence and convergence of a smooth homotopy path are proven. In addition, the starting point is not needed to be a feasible interior point of the original feasible set, and can be chosen freely in a bounded ball region, hence this homotopy method can be implemented conveniently.</description><subject>Convergence</subject><subject>Electronic mail</subject><subject>Equations</subject><subject>Games</subject><subject>global convergence</subject><subject>homotopy method</subject><subject>nonlinear programming</subject><subject>Prediction algorithms</subject><subject>Programming</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj0FLxDAUhCMiqOv-APGSP9Cal7RJ3nEp6hZWvPS-pO1Lt9I2JS3I_nsXXHAuw8A3A8PYM4gUQOBrWXxWqRQAqRZC5lrdsEfQIG1mTIa3_wGye7Zdlm9xkdaoLD6wcsc9uaWvB-ILrXz5oWHop46fwhjWMJ_5SOsptNyHyDuaKLqBT2G6MOQin2PoohvHS-OJ3Xk3LLS9-oZV729VsU8OXx9lsTskPYo1Md5aMARkTaPyGoVtUHhqUXqJtgYlSaFzknLlctV4A4iaXKuE1N5jrjbs5W-2J6LjHPvRxfPx-lz9Ai99TUc</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Zhengyong Zhou</creator><creator>Bo Yu</creator><creator>Yufeng Shang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A feasible set swelling homotopy method for general nonlinear programming</title><author>Zhengyong Zhou ; Bo Yu ; Yufeng Shang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7f8817e1e87c35b908c90fed92f298b132e39aa2e53a53cf71996ead3026ff953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Electronic mail</topic><topic>Equations</topic><topic>Games</topic><topic>global convergence</topic><topic>homotopy method</topic><topic>nonlinear programming</topic><topic>Prediction algorithms</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhengyong Zhou</creatorcontrib><creatorcontrib>Bo Yu</creatorcontrib><creatorcontrib>Yufeng Shang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhengyong Zhou</au><au>Bo Yu</au><au>Yufeng Shang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A feasible set swelling homotopy method for general nonlinear programming</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>1884</spage><epage>1887</epage><pages>1884-1887</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>This paper provides a non-interior homotopy method for nonlinear programming with general equality and inequality constraints. Under a weak assumption for a swelled feasible set as well as several basic conditions for nonlinear programming, existence and convergence of a smooth homotopy path are proven. In addition, the starting point is not needed to be a feasible interior point of the original feasible set, and can be chosen freely in a bounded ball region, hence this homotopy method can be implemented conveniently.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6002563</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847714 |
ispartof | 2011 International Conference on Multimedia Technology, 2011, p.1884-1887 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6002563 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Convergence Electronic mail Equations Games global convergence homotopy method nonlinear programming Prediction algorithms Programming |
title | A feasible set swelling homotopy method for general nonlinear programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20feasible%20set%20swelling%20homotopy%20method%20for%20general%20nonlinear%20programming&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Zhengyong%20Zhou&rft.date=2011-07&rft.spage=1884&rft.epage=1887&rft.pages=1884-1887&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6002563&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&rft_dat=%3Cieee_6IE%3E6002563%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7f8817e1e87c35b908c90fed92f298b132e39aa2e53a53cf71996ead3026ff953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6002563&rfr_iscdi=true |