Loading…
Silicon-based integrated field emission electron sources for sensor application
We report on the design, fabrication and characterization of p-type silicon field emitter arrays for the application in compact fast switchable electron sources. Since standard silicon technology has been used to prepare the devices, they can be easily integrated with other silicon based sensors and...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the design, fabrication and characterization of p-type silicon field emitter arrays for the application in compact fast switchable electron sources. Since standard silicon technology has been used to prepare the devices, they can be easily integrated with other silicon based sensors and electronic components, too. The emitter arrays consist of approx. 3×10 5 tips per cm 2 , with a tip radius less than 20 nm. By using self-aligned processes, an integrated gate electrode with a diameter of ~3 μm was placed concentrically around the tips. A mesh of silicon-beams with a grating period of 100 μm and beam width of 20 μm forms the anode of the electron source. A glass wafer (thickness 300 μm) acts as spacer between anode and Si-tip cathode. Characterization of the field emission properties of the emitter arrays was performed by high resolution field emission scanning microscopy. The emitter arrays exhibit a highly stable and very homogeneous emission. A maximum stable current of 0.1 μA per tip was found. A saturation level in the voltage current characteristics, which was found at around 10 nA, supports current stabilisation and will enable optical modulation of the emission current. |
---|---|
ISSN: | 2164-2370 |