Loading…
Job shop scheduling based on ACO with a hybrid solution construction strategy
This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely a...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2927 |
container_issue | |
container_start_page | 2922 |
container_title | |
container_volume | |
creator | Shih-Pang Tseng Chun-Wei Tsai Jui-Le Chen Ming-Chao Chiang Chu-Sing Yang |
description | This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP. |
doi_str_mv | 10.1109/FUZZY.2011.6007565 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6007565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6007565</ieee_id><sourcerecordid>6007565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNAIkqpIfgIt_IGEdx69jFVEeKuqFHuilsmOnMQpJFSdC-Xss6IU97M5oNKvRIHRHICME1MN6t99_ZDkQknEAwTi7QIkSkhR5UQhKBLv8xxm5QotolKlgsrhBSQifEIdzRYVYoLfX3uDQ9CccqsbZqfXdERsdnMV9h1flFn_7scEaN7MZvMWhb6fRR6nquzAOU_VLItKjO8636LrWbXDJ-S7Rbv34Xj6nm-3TS7napD4GHFNuQehCxbSEWg3G1jWXVHBjpKypUHlOHbWuchWjAA6EjJsJBVpbIM7SJbr_--udc4fT4L_0MB_OhdAfpwBSGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</creator><creatorcontrib>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</creatorcontrib><description>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424473151</identifier><identifier>ISBN: 1424473152</identifier><identifier>EISBN: 9781424473175</identifier><identifier>EISBN: 1424473179</identifier><identifier>EISBN: 1424473160</identifier><identifier>EISBN: 9781424473168</identifier><identifier>DOI: 10.1109/FUZZY.2011.6007565</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Benchmark testing ; Electronic mail ; Job shop scheduling ; job shop scheduling problem ; Optimization ; Simulation ; transition operator</subject><ispartof>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2922-2927</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6007565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6007565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih-Pang Tseng</creatorcontrib><creatorcontrib>Chun-Wei Tsai</creatorcontrib><creatorcontrib>Jui-Le Chen</creatorcontrib><creatorcontrib>Ming-Chao Chiang</creatorcontrib><creatorcontrib>Chu-Sing Yang</creatorcontrib><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><title>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</title><addtitle>FUZZY</addtitle><description>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Electronic mail</subject><subject>Job shop scheduling</subject><subject>job shop scheduling problem</subject><subject>Optimization</subject><subject>Simulation</subject><subject>transition operator</subject><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><isbn>9781424473175</isbn><isbn>1424473179</isbn><isbn>1424473160</isbn><isbn>9781424473168</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtOwzAQNAIkqpIfgIt_IGEdx69jFVEeKuqFHuilsmOnMQpJFSdC-Xss6IU97M5oNKvRIHRHICME1MN6t99_ZDkQknEAwTi7QIkSkhR5UQhKBLv8xxm5QotolKlgsrhBSQifEIdzRYVYoLfX3uDQ9CccqsbZqfXdERsdnMV9h1flFn_7scEaN7MZvMWhb6fRR6nquzAOU_VLItKjO8636LrWbXDJ-S7Rbv34Xj6nm-3TS7napD4GHFNuQehCxbSEWg3G1jWXVHBjpKypUHlOHbWuchWjAA6EjJsJBVpbIM7SJbr_--udc4fT4L_0MB_OhdAfpwBSGA</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Shih-Pang Tseng</creator><creator>Chun-Wei Tsai</creator><creator>Jui-Le Chen</creator><creator>Ming-Chao Chiang</creator><creator>Chu-Sing Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><author>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Electronic mail</topic><topic>Job shop scheduling</topic><topic>job shop scheduling problem</topic><topic>Optimization</topic><topic>Simulation</topic><topic>transition operator</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih-Pang Tseng</creatorcontrib><creatorcontrib>Chun-Wei Tsai</creatorcontrib><creatorcontrib>Jui-Le Chen</creatorcontrib><creatorcontrib>Ming-Chao Chiang</creatorcontrib><creatorcontrib>Chu-Sing Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih-Pang Tseng</au><au>Chun-Wei Tsai</au><au>Jui-Le Chen</au><au>Ming-Chao Chiang</au><au>Chu-Sing Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Job shop scheduling based on ACO with a hybrid solution construction strategy</atitle><btitle>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</btitle><stitle>FUZZY</stitle><date>2011-06</date><risdate>2011</risdate><spage>2922</spage><epage>2927</epage><pages>2922-2927</pages><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><eisbn>9781424473175</eisbn><eisbn>1424473179</eisbn><eisbn>1424473160</eisbn><eisbn>9781424473168</eisbn><abstract>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2011.6007565</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2922-2927 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_6007565 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Ant colony optimization Benchmark testing Electronic mail Job shop scheduling job shop scheduling problem Optimization Simulation transition operator |
title | Job shop scheduling based on ACO with a hybrid solution construction strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Job%20shop%20scheduling%20based%20on%20ACO%20with%20a%20hybrid%20solution%20construction%20strategy&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE%202011)&rft.au=Shih-Pang%20Tseng&rft.date=2011-06&rft.spage=2922&rft.epage=2927&rft.pages=2922-2927&rft.issn=1098-7584&rft.isbn=9781424473151&rft.isbn_list=1424473152&rft_id=info:doi/10.1109/FUZZY.2011.6007565&rft.eisbn=9781424473175&rft.eisbn_list=1424473179&rft.eisbn_list=1424473160&rft.eisbn_list=9781424473168&rft_dat=%3Cieee_6IE%3E6007565%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6007565&rfr_iscdi=true |