Loading…

Job shop scheduling based on ACO with a hybrid solution construction strategy

This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely a...

Full description

Saved in:
Bibliographic Details
Main Authors: Shih-Pang Tseng, Chun-Wei Tsai, Jui-Le Chen, Ming-Chao Chiang, Chu-Sing Yang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2927
container_issue
container_start_page 2922
container_title
container_volume
creator Shih-Pang Tseng
Chun-Wei Tsai
Jui-Le Chen
Ming-Chao Chiang
Chu-Sing Yang
description This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.
doi_str_mv 10.1109/FUZZY.2011.6007565
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6007565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6007565</ieee_id><sourcerecordid>6007565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNAIkqpIfgIt_IGEdx69jFVEeKuqFHuilsmOnMQpJFSdC-Xss6IU97M5oNKvRIHRHICME1MN6t99_ZDkQknEAwTi7QIkSkhR5UQhKBLv8xxm5QotolKlgsrhBSQifEIdzRYVYoLfX3uDQ9CccqsbZqfXdERsdnMV9h1flFn_7scEaN7MZvMWhb6fRR6nquzAOU_VLItKjO8636LrWbXDJ-S7Rbv34Xj6nm-3TS7napD4GHFNuQehCxbSEWg3G1jWXVHBjpKypUHlOHbWuchWjAA6EjJsJBVpbIM7SJbr_--udc4fT4L_0MB_OhdAfpwBSGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</creator><creatorcontrib>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</creatorcontrib><description>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424473151</identifier><identifier>ISBN: 1424473152</identifier><identifier>EISBN: 9781424473175</identifier><identifier>EISBN: 1424473179</identifier><identifier>EISBN: 1424473160</identifier><identifier>EISBN: 9781424473168</identifier><identifier>DOI: 10.1109/FUZZY.2011.6007565</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Benchmark testing ; Electronic mail ; Job shop scheduling ; job shop scheduling problem ; Optimization ; Simulation ; transition operator</subject><ispartof>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2922-2927</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6007565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6007565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih-Pang Tseng</creatorcontrib><creatorcontrib>Chun-Wei Tsai</creatorcontrib><creatorcontrib>Jui-Le Chen</creatorcontrib><creatorcontrib>Ming-Chao Chiang</creatorcontrib><creatorcontrib>Chu-Sing Yang</creatorcontrib><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><title>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</title><addtitle>FUZZY</addtitle><description>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Electronic mail</subject><subject>Job shop scheduling</subject><subject>job shop scheduling problem</subject><subject>Optimization</subject><subject>Simulation</subject><subject>transition operator</subject><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><isbn>9781424473175</isbn><isbn>1424473179</isbn><isbn>1424473160</isbn><isbn>9781424473168</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtOwzAQNAIkqpIfgIt_IGEdx69jFVEeKuqFHuilsmOnMQpJFSdC-Xss6IU97M5oNKvRIHRHICME1MN6t99_ZDkQknEAwTi7QIkSkhR5UQhKBLv8xxm5QotolKlgsrhBSQifEIdzRYVYoLfX3uDQ9CccqsbZqfXdERsdnMV9h1flFn_7scEaN7MZvMWhb6fRR6nquzAOU_VLItKjO8636LrWbXDJ-S7Rbv34Xj6nm-3TS7napD4GHFNuQehCxbSEWg3G1jWXVHBjpKypUHlOHbWuchWjAA6EjJsJBVpbIM7SJbr_--udc4fT4L_0MB_OhdAfpwBSGA</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Shih-Pang Tseng</creator><creator>Chun-Wei Tsai</creator><creator>Jui-Le Chen</creator><creator>Ming-Chao Chiang</creator><creator>Chu-Sing Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Job shop scheduling based on ACO with a hybrid solution construction strategy</title><author>Shih-Pang Tseng ; Chun-Wei Tsai ; Jui-Le Chen ; Ming-Chao Chiang ; Chu-Sing Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Electronic mail</topic><topic>Job shop scheduling</topic><topic>job shop scheduling problem</topic><topic>Optimization</topic><topic>Simulation</topic><topic>transition operator</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih-Pang Tseng</creatorcontrib><creatorcontrib>Chun-Wei Tsai</creatorcontrib><creatorcontrib>Jui-Le Chen</creatorcontrib><creatorcontrib>Ming-Chao Chiang</creatorcontrib><creatorcontrib>Chu-Sing Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih-Pang Tseng</au><au>Chun-Wei Tsai</au><au>Jui-Le Chen</au><au>Ming-Chao Chiang</au><au>Chu-Sing Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Job shop scheduling based on ACO with a hybrid solution construction strategy</atitle><btitle>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</btitle><stitle>FUZZY</stitle><date>2011-06</date><risdate>2011</risdate><spage>2922</spage><epage>2927</epage><pages>2922-2927</pages><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><eisbn>9781424473175</eisbn><eisbn>1424473179</eisbn><eisbn>1424473160</eisbn><eisbn>9781424473168</eisbn><abstract>This paper presents a novel ant colony optimization (ACO) based on an efficient solution construction strategy (transition operator) for improving the quality of the end results of job shop scheduling problem (JSSP). Inspired by the observation that the quality of the end results of ACO is largely affected by their operators-especially the transition operator, a novel solution construction strategy is presented in this paper. The proposed algorithm uses two different strategies to compute the probability of solution construction to improve the end results. Our experimental results show that the proposed algorithm outperforms all state-of-the-art job shop scheduling algorithms evaluated in this paper and can significantly improve the quality of ant colony optimization for JSSP.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2011.6007565</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2922-2927
issn 1098-7584
language eng
recordid cdi_ieee_primary_6007565
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Ant colony optimization
Benchmark testing
Electronic mail
Job shop scheduling
job shop scheduling problem
Optimization
Simulation
transition operator
title Job shop scheduling based on ACO with a hybrid solution construction strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Job%20shop%20scheduling%20based%20on%20ACO%20with%20a%20hybrid%20solution%20construction%20strategy&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE%202011)&rft.au=Shih-Pang%20Tseng&rft.date=2011-06&rft.spage=2922&rft.epage=2927&rft.pages=2922-2927&rft.issn=1098-7584&rft.isbn=9781424473151&rft.isbn_list=1424473152&rft_id=info:doi/10.1109/FUZZY.2011.6007565&rft.eisbn=9781424473175&rft.eisbn_list=1424473179&rft.eisbn_list=1424473160&rft.eisbn_list=9781424473168&rft_dat=%3Cieee_6IE%3E6007565%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d07a4931713da0bdff68376bb88f379223e3decec5300e07800e5790aad01ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6007565&rfr_iscdi=true