Loading…

Analysis of short-term estuarine phytoplankton dynamics using neural networks

The artificial neural network (ANN) approach was investigated to model the short-term phytoplankton dynamics in the Skidaway River Estuary. The ability of ANN to model phytoplankton biomass and density of dominant species was evaluated using surface water sampling data collected during bloom and non...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Zhang, Zhenhua Xie, Parris, D. J., Cohen, R. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 738
container_issue
container_start_page 734
container_title
container_volume 2
creator Ying Zhang
Zhenhua Xie
Parris, D. J.
Cohen, R. A.
description The artificial neural network (ANN) approach was investigated to model the short-term phytoplankton dynamics in the Skidaway River Estuary. The ability of ANN to model phytoplankton biomass and density of dominant species was evaluated using surface water sampling data collected during bloom and non-bloom periods. During the spring bloom period, the ANN models provided good accuracy for phytoplankton biomass and densities of rapidly growing species using salinity, nitrate, temperature and dissolved oxygen. During the non-bloom period, variation of phytoplankton was small and could not be modeled successfully using the same four environmental factors used to create spring bloom models. Lagged phytoplankton measurements can be added as inputs to increase accuracy of all phytoplankton models.
doi_str_mv 10.1109/ICNC.2011.6022246
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6022246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6022246</ieee_id><sourcerecordid>6022246</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ab14a860aa5039beaed743305a5fd2281c76433735b2f9e0a3bbe153ff79a1d23</originalsourceid><addsrcrecordid>eNpVkL1OwzAYAI0AiarkARCLXyDlsx3H8VhF_FQqsHSvvjQ2NU2cyHaE8vZUogvT6ZYbjpAHBivGQD9t6o96xYGxVQmc86K8IplWFSt4UWgteXn9z4HfkAVnUuVaSnlHshi_AUAwpRToBXlfe-zm6CIdLI3HIaQ8mdBTE9OEwXlDx-OchrFDf0qDp-3ssXeHSKfo_Bf1ZgrYnZF-hnCK9-TWYhdNduGS7F6ed_Vbvv183dTrbe40pBwbVmBVAqIEoRuDplWFECBR2pbzih1UeXYlZMOtNoCiaQyTwlqlkbVcLMnjX9YZY_ZjcD2GeX_5IX4ByX5SyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of short-term estuarine phytoplankton dynamics using neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying Zhang ; Zhenhua Xie ; Parris, D. J. ; Cohen, R. A.</creator><creatorcontrib>Ying Zhang ; Zhenhua Xie ; Parris, D. J. ; Cohen, R. A.</creatorcontrib><description>The artificial neural network (ANN) approach was investigated to model the short-term phytoplankton dynamics in the Skidaway River Estuary. The ability of ANN to model phytoplankton biomass and density of dominant species was evaluated using surface water sampling data collected during bloom and non-bloom periods. During the spring bloom period, the ANN models provided good accuracy for phytoplankton biomass and densities of rapidly growing species using salinity, nitrate, temperature and dissolved oxygen. During the non-bloom period, variation of phytoplankton was small and could not be modeled successfully using the same four environmental factors used to create spring bloom models. Lagged phytoplankton measurements can be added as inputs to increase accuracy of all phytoplankton models.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9781424499502</identifier><identifier>ISBN: 142449950X</identifier><identifier>EISBN: 9781424499526</identifier><identifier>EISBN: 1424499534</identifier><identifier>EISBN: 9781424499533</identifier><identifier>EISBN: 1424499526</identifier><identifier>DOI: 10.1109/ICNC.2011.6022246</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial neural network ; Artificial neural networks ; Biological system modeling ; Biomass ; community composition ; dominant species ; estuary ; Rivers ; Sea measurements ; Skidaway River Estuary ; Springs ; Temperature measurement</subject><ispartof>2011 Seventh International Conference on Natural Computation, 2011, Vol.2, p.734-738</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6022246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6022246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying Zhang</creatorcontrib><creatorcontrib>Zhenhua Xie</creatorcontrib><creatorcontrib>Parris, D. J.</creatorcontrib><creatorcontrib>Cohen, R. A.</creatorcontrib><title>Analysis of short-term estuarine phytoplankton dynamics using neural networks</title><title>2011 Seventh International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>The artificial neural network (ANN) approach was investigated to model the short-term phytoplankton dynamics in the Skidaway River Estuary. The ability of ANN to model phytoplankton biomass and density of dominant species was evaluated using surface water sampling data collected during bloom and non-bloom periods. During the spring bloom period, the ANN models provided good accuracy for phytoplankton biomass and densities of rapidly growing species using salinity, nitrate, temperature and dissolved oxygen. During the non-bloom period, variation of phytoplankton was small and could not be modeled successfully using the same four environmental factors used to create spring bloom models. Lagged phytoplankton measurements can be added as inputs to increase accuracy of all phytoplankton models.</description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Biomass</subject><subject>community composition</subject><subject>dominant species</subject><subject>estuary</subject><subject>Rivers</subject><subject>Sea measurements</subject><subject>Skidaway River Estuary</subject><subject>Springs</subject><subject>Temperature measurement</subject><issn>2157-9555</issn><isbn>9781424499502</isbn><isbn>142449950X</isbn><isbn>9781424499526</isbn><isbn>1424499534</isbn><isbn>9781424499533</isbn><isbn>1424499526</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkL1OwzAYAI0AiarkARCLXyDlsx3H8VhF_FQqsHSvvjQ2NU2cyHaE8vZUogvT6ZYbjpAHBivGQD9t6o96xYGxVQmc86K8IplWFSt4UWgteXn9z4HfkAVnUuVaSnlHshi_AUAwpRToBXlfe-zm6CIdLI3HIaQ8mdBTE9OEwXlDx-OchrFDf0qDp-3ssXeHSKfo_Bf1ZgrYnZF-hnCK9-TWYhdNduGS7F6ed_Vbvv183dTrbe40pBwbVmBVAqIEoRuDplWFECBR2pbzih1UeXYlZMOtNoCiaQyTwlqlkbVcLMnjX9YZY_ZjcD2GeX_5IX4ByX5SyQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Ying Zhang</creator><creator>Zhenhua Xie</creator><creator>Parris, D. J.</creator><creator>Cohen, R. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Analysis of short-term estuarine phytoplankton dynamics using neural networks</title><author>Ying Zhang ; Zhenhua Xie ; Parris, D. J. ; Cohen, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ab14a860aa5039beaed743305a5fd2281c76433735b2f9e0a3bbe153ff79a1d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Biomass</topic><topic>community composition</topic><topic>dominant species</topic><topic>estuary</topic><topic>Rivers</topic><topic>Sea measurements</topic><topic>Skidaway River Estuary</topic><topic>Springs</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying Zhang</creatorcontrib><creatorcontrib>Zhenhua Xie</creatorcontrib><creatorcontrib>Parris, D. J.</creatorcontrib><creatorcontrib>Cohen, R. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying Zhang</au><au>Zhenhua Xie</au><au>Parris, D. J.</au><au>Cohen, R. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of short-term estuarine phytoplankton dynamics using neural networks</atitle><btitle>2011 Seventh International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2011-07</date><risdate>2011</risdate><volume>2</volume><spage>734</spage><epage>738</epage><pages>734-738</pages><issn>2157-9555</issn><isbn>9781424499502</isbn><isbn>142449950X</isbn><eisbn>9781424499526</eisbn><eisbn>1424499534</eisbn><eisbn>9781424499533</eisbn><eisbn>1424499526</eisbn><abstract>The artificial neural network (ANN) approach was investigated to model the short-term phytoplankton dynamics in the Skidaway River Estuary. The ability of ANN to model phytoplankton biomass and density of dominant species was evaluated using surface water sampling data collected during bloom and non-bloom periods. During the spring bloom period, the ANN models provided good accuracy for phytoplankton biomass and densities of rapidly growing species using salinity, nitrate, temperature and dissolved oxygen. During the non-bloom period, variation of phytoplankton was small and could not be modeled successfully using the same four environmental factors used to create spring bloom models. Lagged phytoplankton measurements can be added as inputs to increase accuracy of all phytoplankton models.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2011.6022246</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2011 Seventh International Conference on Natural Computation, 2011, Vol.2, p.734-738
issn 2157-9555
language eng
recordid cdi_ieee_primary_6022246
source IEEE Electronic Library (IEL) Conference Proceedings
subjects artificial neural network
Artificial neural networks
Biological system modeling
Biomass
community composition
dominant species
estuary
Rivers
Sea measurements
Skidaway River Estuary
Springs
Temperature measurement
title Analysis of short-term estuarine phytoplankton dynamics using neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20short-term%20estuarine%20phytoplankton%20dynamics%20using%20neural%20networks&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Natural%20Computation&rft.au=Ying%20Zhang&rft.date=2011-07&rft.volume=2&rft.spage=734&rft.epage=738&rft.pages=734-738&rft.issn=2157-9555&rft.isbn=9781424499502&rft.isbn_list=142449950X&rft_id=info:doi/10.1109/ICNC.2011.6022246&rft.eisbn=9781424499526&rft.eisbn_list=1424499534&rft.eisbn_list=9781424499533&rft.eisbn_list=1424499526&rft_dat=%3Cieee_6IE%3E6022246%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ab14a860aa5039beaed743305a5fd2281c76433735b2f9e0a3bbe153ff79a1d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6022246&rfr_iscdi=true