Loading…
Locational dependence of maximum installable PV capacity in LV networks while maintaining voltage limits
We assess the effects that size and locations of photovoltaic (PV) arrays in a low-voltage (LV) electric power grid have on the maximum installable capacity. The objective is to place and control PVs without violating voltage limits and not require interventions by utilities. Multi-modal control is...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We assess the effects that size and locations of photovoltaic (PV) arrays in a low-voltage (LV) electric power grid have on the maximum installable capacity. The objective is to place and control PVs without violating voltage limits and not require interventions by utilities. Multi-modal control is suggested whereby the PVs deviate from unity power factor and begin to supply reactive power if the voltage limits are approached; the installed capacity need not ever be disconnected. Given such multi-modal control, it is shown that the best location of a large PV farm is at the load located furthest away from the medium voltage step-down transformer. Furthermore, we show that the maximum installable capacity increases if the capacity is distributed as many smaller "rooftop" PVs. |
---|---|
DOI: | 10.1109/NAPS.2011.6025197 |